2002 AMC 10A Problems/Problem 20
Problem
Points and lie, in that order, on , dividing it into five segments, each of length 1. Point is not on line . Point lies on , and point lies on . The line segments and are parallel. Find .
[asy] pair A,B,C,D,EE,F,G,H,J; A = (0,0); B = (0.2,0); C = 2*B; D = 3*B; EE = 4*B; F = 5*B; G = (-0.2,0.8); H = intersectionpoint(G--D,C -- (C + G)); J = intersectionpoint(G--F,EE--(EE+G)); draw(G--F--A--G--B); draw(H--C--G--D); draw(J--EE--G); label("",A,SW); label("",B,S); label("",C,S); label("",D,S); label("",EE,S); label("",F,SE); label("",J,NE); label("",G,N); label(scale(0.9)*"",H,NE,UnFill(0.1mm)); [/asy]
Solution
Solution #1: Since and are parallel, triangles and are similar. Hence, .
Since and are parallel, triangles and are similar. Hence, . Therefore, . The answer is (D).
Solution #2: As is parallel to , angles FJE and FGA are congruent. Also, angle F is clearly congruent to itself. From AA similarity, ; hence . Similarly, . Thus, .
See Also
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.