2016 AMC 12B Problems/Problem 14
Problem
The sum of an infinite geometric series is a positive number , and the second term in the series is . What is the smallest possible value of
Solution
The second term in a geometric series is , where is the common ratio for the series and is the first term of the series. So we know that and we wish to find the minimum value of the infinite sum of the series. We know that: and substituting in , we get that . From here, you can either use calculus or AM-GM.
Calculus: Let , then . Since and are undefined . This means that we only need to find where the derivative equals , meaning . So , meaning that
AM-GM For 2 positive real numbers and , . Let and . Then: . This implies that . or . Rearranging : $(S_\infty-2)^2 \geq 4 \Rightarrow S_\infty -2 \geq 2 \Righarrow S_\infty \geq 4$ (Error compiling LaTeX. Unknown error_msg). Thus, the smallest value is .
See Also
2016 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.