2016 AMC 10B Problems/Problem 25
Problem
Let , where denotes the greatest integer less than or equal to . How many distinct values does assume for ?
Solution
Since , we have
The function can then be simplified into
which becomes
We can see that for each value of k, can equal integers from 0 to k-1.
Clearly, the value of changes only when x is equal to any of the fractions .
By listing out all the fractions that are changing points for the value of one or more , we find that there are 31 unique fractions.
Because the value of is at least 0 and can increase 31 times, there are a total of 32 different possible values of .
(Solution probably needs editing for clarity.)
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.