2017 AMC 12A Problems/Problem 17
Contents
Problem
There are different complex numbers such that . For how many of these is a real number?
Solution
Note that these such that are for integer . So
This is real iff is even. Thus, the answer is the number of even which is .
Solution 2
By Euler's identity, , where is an integer.
Using De Moivre's Theorem, we have , where and is an integer.
Using De Moivre's Theorem again, we have that
For to be real, has be equal to negate the imaginary component. This occurs whenever is a multiple of . This occurs whenever is even. There are exactly even values of on the interval , so the answer is .
See Also
2017 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 16 |
Followed by Problem 18 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.