2018 AMC 10B Problems/Problem 16

Revision as of 17:13, 16 February 2018 by Arpitr20 (talk | contribs) (Faster Solution)

Let $a_1,a_2,\dots,a_{2018}$ be a strictly increasing sequence of positive integers such that \[a_1+a_2+\cdots+a_{2018}=2018^{2018}.\] What is the remainder when $a_1^3+a_2^3+\cdots+a_{2018}^3$ is divided by $6$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Faster Solution

Remember that $n^{3}\equiv n \pmod{6}$

Therefore, that huge sum is congruent to $2018^{2018} \pmod{6} = 2^{2018} \pmod{6} = \boxed{ (E) 4}$ --- Arpitr20

Solution

(not very good one)

Note that $\left(a_1+a_2+\cdots+a_{2018}\right)^3=a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2\left(a_1+a_2+\cdots+a_{2018}-a_1\right)+3a_2^2\left(a_1+a_2+\cdots+a_{2018}-a_2\right)+\cdots+3a_{2018}^2\left(a_1+a_2+\cdots+a_{2018}-a_{2018}\right)+6\prod_{i\neq j\neq k}^{2018} a_ia_ja_k$

Note that $a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2\left(a_1+a_2+\cdots+a_{2018}-a_1\right)+3a_2^2\left(a_1+a_2+\cdots+a_{2018}-a_2\right)+\cdots+3a_{2018}^2\left(a_1+a_2+\cdots+a_{2018}-a_{2018}\right)+6\prod_{i\neq j\neq k}^{2018} a_ia_ja_k\equiv a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2(2018-a_1)+3a_2^2(2018-a_2)+\cdots+3a_{2018}^2(2018-a_{2018}) \equiv -2(a_1^3+a_2^3+\cdots+a_{2018}^3)\pmod 6$ Therefore, $-2(a_1^3+a_2^3+\cdots+a_{2018}^3)\equiv \left(2018^{2018}\right)^3\equiv\left( 2^{2018}\right)^3\equiv 4^3\equiv 4\pmod{6}$.

Thus, $a_1^3+a_2^3+\cdots+a_{2018}^3\equiv 1\pmod 3$. However, since cubing preserves parity, and the sum of the individual terms is even, the some of the cubes is also even, and our answer is $\boxed{\text{(E) }4}$

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png