1963 AHSME Problems/Problem 34

Revision as of 16:56, 7 June 2018 by Rockmanex3 (talk | contribs) (Solution to Problem 34)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In $\triangle ABC$, side $a = \sqrt{3}$, side $b = \sqrt{3}$, and side $c > 3$. Let $x$ be the largest number such that the magnitude, in degrees, of the angle opposite side $c$ exceeds $x$. Then $x$ equals:

$\textbf{(A)}\ 150^{\circ} \qquad \textbf{(B)}\ 120^{\circ}\qquad \textbf{(C)}\ 105^{\circ} \qquad \textbf{(D)}\ 90^{\circ} \qquad \textbf{(E)}\ 60^{\circ}$

Solution

Using the Law of Cosines, \[\sqrt{3 + 3 - 2\cdot 3 \cdot \cos{x^\circ}}>3\]

Both sides are positive, so squaring both sides will not affect the inequality.

\[6 - 6 \cos{x^\circ}>9\] \[\cos{x^\circ} < -\frac{1}{2}\]

Note that $\cos{120^\circ} = -\frac{1}{2}$. As $x$ gets closer to $180^{\circ}$, $\cos{x}$ decreases towards $-1$. Thus, $x > 120$, so the answer is $\boxed{\textbf{(B)}}$


See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png