2018 AMC 8 Problems/Problem 17

Revision as of 18:25, 21 November 2018 by Ben chen (talk | contribs)

Problem 17

Bella begins to walk from her house toward her friend Ella's house. At the same time, Ella begins to ride her bicycle toward Bella's house. They each maintain a constant speed, and Ella rides 5 times as fast as Bella walks. The distance between their houses is $2$ miles, which is $10,560$ feet, and Bella covers $2 \tfrac{1}{2}$ feet with each step. How many steps will Bella take by the time she meets Ella?

$\textbf{(A) }704\qquad\textbf{(B) }845\qquad\textbf{(C) }1056\qquad\textbf{(D) }1760\qquad \textbf{(E) }3520$

Solution

Since Ella rides 5 times as fast as Bella, Ella rides at a rate of $\frac{25}{2}$ or $12 \tfrac{1}{2}$. Together, they move $15$ feet towards each other every unit. You divide $10560$ by $15$ to find the number of steps Ella takes, which results in the answer of $\boxed{\textbf{(A) }704}$

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png