1981 AHSME Problems

Revision as of 22:31, 13 March 2015 by Mathgeek2006 (talk | contribs) (Problem 24)

Problem 1

If $\sqrt{x+2}=2$, then $(x+2)^{2}$ equals

$\textbf{(A)}\ \sqrt{2}\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 16$

Solution

Problem 2

Point $E$ is on side $AB$ of square $ABCD$. If $EB$ has length one and $EC$ has length two, then the area of the square is

$\textbf{(A)}\ \sqrt{3}\qquad\textbf{(B)}\ \sqrt{5}\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 2\sqrt{3}\qquad\textbf{(E)}\ 5$

Solution

Problem 3

For $x\neq0$, $\dfrac{1}{x}+\dfrac{1}{2x}+\dfrac{1}{3x}$ equals

$\textbf{(A)}\ \dfrac{1}{2x}\qquad\textbf{(B)}\ \dfrac{1}{6}\qquad\textbf{(C)}\ \dfrac{5}{6x}\qquad\textbf{(D)}\ \dfrac{11}{6x}\qquad\textbf{(E)}\ \dfrac{1}{6x^3}$

Solution

Problem 4

If three times the larger of two numbers is four times the smaller and the difference between the numbers is 8, the the larger of two numbers is

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 24\qquad\textbf{(C)}\ 32\qquad\textbf{(D)}\ 44\qquad\textbf{(E)}\ 52$

Solution

Problem 5

In trapezoid $ABCD$, sides $AB$ and $CD$ are parallel, and diagonal $BD$ and side $AD$ have equal length. If $m\angle DCB=110^\circ$ and $m\angle CBD=30^\circ$, then $m\angle ADB=$

$\textbf{(A)}\ 80^\circ\qquad\textbf{(B)}\ 90^\circ\qquad\textbf{(C)}\ 100^\circ\qquad\textbf{(D)}\ 110^\circ\qquad\textbf{(E)}\ 120^\circ$

Solution

Problem 6

If $\dfrac{x}{x-1}=\dfrac{y^2+2y-1}{y^2+2y-2}$, then $x$ equals

$\textbf{(A)}\ y^2+2y-1\qquad\textbf{(B)}\ y^2+2y-2\qquad\textbf{(C)}\ y^2+2y+2 \qquad \\ \textbf{(D)}\ y^2+2y+1\qquad\textbf{(E)}\ -y^2-2y+1$

Solution

Problem 7

How many of the first one hundred positive integers are divisible by all of the numbers $2$, $3$, $4$, and $5$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution

Problem 8

For all positive numbers $x$, $y$, $z$, the product $(x+y+z)^{-1}(x^{-1}+y^{-1}+z^{-1})(xy+yz+xz)^{-1}[(xy)^{-1}+(yz)^{-1}+(xz)^{-1}]$ equals $\textbf{(A)}\ x^{-2}y^{-2}z^{-2}\qquad\textbf{(B)}\ x^{-2}+y^{-2}+z^{-2}\qquad\textbf{(C)}\ (x+y+z)^{-1}\qquad \textbf{(D)}\ \dfrac{1}{xyz}\qquad \\ \textbf{(E)}\ \dfrac{1}{xy+yz+xz}$


Solution

Problem 9

In the adjoining figure, $PQ$ is a diagonal of the cube. If $PQ$ has length $a$, then the surface area of the cube is

[asy] import three; unitsize(1cm); size(200); currentprojection=orthographic(1/3,-1,1/2); draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle,black); draw((0,0,0)--(0,0,1),black); draw((0,1,0)--(0,1,1),black); draw((1,1,0)--(1,1,1),black); draw((1,0,0)--(1,0,1),black); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle,black); draw((0,0,0)--(1,1,1),black); label("$P$",(0, 0, 0),NW); label("$Q$",(1, 1, 1),NE); [/asy]

$\textbf{(A)}\ 2a^2\qquad\textbf{(B)}\ 2\sqrt{2}a^2\qquad\textbf{(C)}\ 2\sqrt{3}a^2\qquad\textbf{(D)}\ 3\sqrt{3}a^2\qquad\textbf{(E)}\ 6a^2$

Solution

Problem 10

The lines $L$ and $K$ are symmetric to each other with respect to the line $y=x$. If the equation of the line $L$ is $y=ax+b$ with $a\neq 0$ and $b\neq 0$, then the equation of $K$ is $y=$

$\textbf{(A)}\ \dfrac{1}{a}x+b\qquad\textbf{(B)}\ -\dfrac{1}{a}x+b\qquad\textbf{(C)}\ \dfrac{1}{a}x-\dfrac{b}{a}\qquad\textbf{(D)}\ \dfrac{1}{a}x+\dfrac{b}{a}\qquad\textbf{(E)}\ \dfrac{1}{a}x-\dfrac{b}{a}$

Solution

Problem 11

The three sides of a right triangle have integral lengths which form an arithmetic progression. One of the sides could have length

$\textbf{(A)}\ 22\qquad\textbf{(B)}\ 58\qquad\textbf{(C)}\ 81\qquad\textbf{(D)}\ 91\qquad\textbf{(E)}\ 361$

Solution

Problem 12

If $p$, $q$, and $M$ are positive numbers and $q<100$, then the number obtained by increasing $M$ by $p\%$ and decreasing the result by $q\%$ exceeds $M$ if and only if

$\textbf{(A)}\ p>q \qquad\textbf{(B)}\ p>\dfrac{q}{100-q}\qquad\textbf{(C)}\ p>\dfrac{q}{1-q}\qquad \textbf{(D)}\ p>\dfrac{100q}{100+q}\qquad \\ \textbf{(E)}\ p>\dfrac{100q}{100-q}$

Solution

Problem 13

Suppose that at the end of any year, a unit of money has lost $10\%$ of the value it had at the beginning of that year. Find the smallest integer $n$ such that after $n$ years, the money will have lost at least $90\%$ of its value (To the nearest thousandth $\log_{10} 3 = 0.477$).

$\textbf{(A)}\ 14\qquad\textbf{(B)}\ 16\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 20\qquad\textbf{(E)}\ 22$

Solution

Problem 14

In a geometric sequence of real numbers, the sum of the first $2$ terms is $7$, and the sum of the first $6$ terms is $91$. The sum of the first $4$ terms is

$\textbf{(A)}\ 28\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 35\qquad\textbf{(D)}\ 49\qquad\textbf{(E)}\ 84$

Solution

Problem 15

If $b>1$, $x>0$, and $(2x)^{\log_b 2}-(3x)^{\log_b 3}=0$, then $x$ is

$\textbf{(A)}\ \dfrac{1}{216}\qquad\textbf{(B)}\ \dfrac{1}{6}\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ \text{not uniquely determined}$

Solution

Problem 16

The base three representation of $x$ is \[12112211122211112222\] The first digit (on the left) of the base nine representation of $x$ is

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 17

The function $f$ is not defined for $x=0$, but, for all non-zero real numbers $x$, $f(x)+f\left(\dfrac{1}x\right)=x$. The equation $f(x)=f(-x)$ is satisfied by

$\textbf{(A)}\ \text{exactly one real number} \qquad \textbf{(B)}\ \text{exactly two real numbers} \qquad\textbf{(C)}\ \text{no real numbers}\qquad \\ \textbf{(D)}\ \text{infinitely many, but not all, non-zero real numbers} \qquad\textbf{(E)}\ \text{all non-zero real numbers}$

Solution

Problem 18

The number of real solutions to the equation \[\dfrac{x}{100}=\sin x\] is

$\textbf{(A)}\ 61\qquad\textbf{(B)}\ 62\qquad\textbf{(C)}\ 63\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 65$

Solution

Problem 19

In $\triangle ABC$, $M$ is the midpoint of side $BC$, $AN$ bisects $\angle BAC$, and $BN\perp AN$. If sides $AB$ and $AC$ have lengths $14$ and $19$, respectively, then find $MN$.

[asy] size(150); defaultpen(linewidth(0.7)+fontsize(10)); pair B=origin, A=14*dir(42), C=intersectionpoint(B--(30,0), Circle(A,19)), M=midpoint(B--C), b=A+14*dir(A--C), N=foot(A, B, b); draw(N--B--A--N--M--C--A^^B--M); markscalefactor=0.1; draw(rightanglemark(B,N,A)); pair point=N; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(30)); label(rotate(angle(dir(A--C)))*"$19$", A--C, dir(A--C)*dir(90)); label(rotate(angle(dir(A--B)))*"$14$", A--B, dir(A--B)*dir(90)); [/asy]

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ \dfrac{5}{2}\qquad\textbf{(C)}\ \dfrac{5}{2}-\sin\theta\qquad\textbf{(D)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\theta\qquad\textbf{(E)}\ \dfrac{5}{2}-\dfrac{1}{2}\sin\left(\dfrac{1}{2}\theta\right)$

Solution

Problem 20

A ray of light originates from point $A$ and travels in a plane, being reflected $n$ times between lines $AD$ and $CD$ before striking a point $B$ (which may be on $AD$ or $CD$) perpendicularly and retracing its path back to $A$ (At each point of reflection the light makes two equal angles as indicated in the adjoining figure. The figure shows the light path for $n=3$). If $\measuredangle CDA=8^\circ$, what is the largest value $n$ can have?

[asy] unitsize(1.5cm); pair D=origin, A=(-6,0), C=6*dir(160), E=3.2*dir(160), F=(-2.1,0), G=1.5*dir(160), B=(-1.4095,0); draw((-6.5,0)--D--C,black); draw(A--E--F--G--B,black); dotfactor=4; dot("$A$",A,S); dot("$C$",C,N); dot("$R_1$",E,N); dot("$R_2$",F,S); dot("$R_3$",G,N); dot("$B$",B,S); markscalefactor=0.015; draw(rightanglemark(G,B,D)); draw(anglemark(C,E,A,12)); draw(anglemark(F,E,G,12)); draw(anglemark(E,F,A)); draw(anglemark(E,F,A,12)); draw(anglemark(B,F,G)); draw(anglemark(B,F,G,12)); draw(anglemark(E,G,F)); draw(anglemark(E,G,F,12)); draw(anglemark(E,G,F,16)); draw(anglemark(B,G,D)); draw(anglemark(B,G,D,12)); draw(anglemark(B,G,D,16)); [/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 10\qquad\textbf{(C)}\ 38\qquad\textbf{(D)}\ 98\qquad\textbf{(E)}\ \text{There is no largest value.}$

Solution

Problem 21

In a triangle with sides of lengths $a$, $b$, and $c$, $(a+b+c)(a+b-c) = 3ab$. The measure of the angle opposite the side length $c$ is

$\textbf{(A)}\ 15^\circ\qquad\textbf{(B)}\ 30^\circ\qquad\textbf{(C)}\ 45^\circ\qquad\textbf{(D)}\ 60^\circ\qquad\textbf{(E)}\ 150^\circ$

Solution

Problem 22

How many lines in a three dimensional rectangular coordiante system pass through four distinct points of the form $(i,j,k)$, where $i$, $j$, and $k$ are positive integers not exceeding four?

$\textbf{(A)}\ 60\qquad\textbf{(B)}\ 64\qquad\textbf{(C)}\ 72\qquad\textbf{(D)}\ 76\qquad\textbf{(E)}\ 100$

Solution

Problem 23

Equilateral $\triangle ABC$ is inscribed in a circle. A second circle is tangent internally to the circumcircle at $T$ and tangent to sides $AB$ and $AC$ at points $P$ and $Q$. If side $BC$ has length $12$, then segment $PQ$ has length

[asy] defaultpen(linewidth(.8pt)); pair B = origin; pair A = dir(60); pair C = dir(0); pair circ = circumcenter(A,B,C); pair P = intersectionpoint(circ--(circ + (-1,0)),A--B); pair Q = intersectionpoint(circ--(circ + (1,0)),A--C); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$P$",P,NW); label("$Q$",Q,NE); label("$T$",(0.5,-0.3),S); draw(A--B--C--cycle); draw(circumcircle(A,B,C)); draw(P--Q); draw(Circle((0.5,0.09),0.385)); [/asy]

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 6\sqrt{3}\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 8\sqrt{3}\qquad\textbf{(E)}\ 9$

Solution

Problem 24

If $\theta$ is a constant such that $0 < \theta < \pi$ and $x + \dfrac{1}{x} = 2\cos{\theta}$, then for each positive integer $n$, $x^n + \dfrac{1}{x^n}$ equals

$\textbf{(A)}\ 2\cos\theta\qquad \textbf{(B)}\ 2^n\cos\theta\qquad \textbf{(C)}\ 2\cos^n\theta\qquad \textbf{(D)}\ 2\cos n\theta\qquad \textbf{(E)}\ 2^n\cos^n\theta$

Solution

Problem 25

In $\triangle ABC$ in the adjoining figure, $AD$ and $AE$ trisect $\angle BAC$. The lengths of $BD$, $DE$ and $EC$ are $2$, $3$, and $6$, respectively. The length of the shortest side of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair A = (0,11); pair B = (2,0); pair D = (4,0); pair E = (7,0); pair C = (13,0); label("$A$",A,N); label("$B$",B,SW); label("$C$",C,SE); label("$D$",D,S); label("$E$",E,S); label("$2$",midpoint(B--D),N); label("$3$",midpoint(D--E),NW); label("$6$",midpoint(E--C),NW); draw(A--B--C--cycle); draw(A--D); draw(A--E); [/asy]

$\textbf{(A)}\ 2\sqrt{10}\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 6\sqrt{6}\qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ \text{not uniquely determined by the given information}$

Solution

Problem 26

Alice, Bob, and Carol repeatedly take turns tossing a die. Alice begins; Bob always follows Alice; Carol always follows Bob; and Alice always follows Carol. Find the probability that Carol will be the first one to toss a six. (The probability of obtaining a six on any toss is $\dfrac{1}{6}$, independent of the outcome of any other toss.)

$\textbf{(A)}\ \dfrac{1}{3}\qquad \textbf{(B)}\ \dfrac{2}{9}\qquad \textbf{(C)}\ \dfrac{5}{18}\qquad \textbf{(D)}\ \dfrac{25}{91}\qquad \textbf{(E)}\ \dfrac{36}{91}$

Solution

Problem 27

In the adjoining figure triangle $ABC$ is inscribed in a circle. Point $D$ lies on $\stackrel{\frown}{AC}$ with $\stackrel{\frown}{DC} = 30^\circ$, and point $G$ lies on $\stackrel{\frown}{BA}$ with $\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}$. Side $AB$ and side $AC$ each have length equal to the length of chord $DG$, and $\angle CAB = 30^\circ$. Chord $DG$ intersects sides $AC$ and $AB$ at $E$ and $F$, respectively. The ratio of the area of $\triangle AFE$ to the area of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("$A$",A,N); label("$B$",B,SE); label("$C$",C,SW); label("$D$",D,SW); label("$G$",G,NE); label("$E$",E,NW); label("$F$",F,W); label("$30^\circ$",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G); [/asy]

$\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}$

Solution

Problem 28

Consider the set of all equations $x^3 + a_2x^2 + a_1x + a_0 = 0$, where $a_2$, $a_1$, $a_0$ are real constants and $|a_i| < 2$ for $i = 0,1,2$. Let $r$ be the largest positive real number which satisfies at least one of these equations. Then

$\textbf{(A)}\ 1 < r < \dfrac{3}{2}\qquad \textbf{(B)}\ \dfrac{3}{2} < r < 2\qquad \textbf{(C)}\ 2 < r < \dfrac{5}{2}\qquad \textbf{(D)}\ \dfrac{5}{2} < r < 3\qquad \\ \textbf{(E)}\ 3 < r < \dfrac{7}{2}$

Solution

Problem 29

If $a > 1$, then the sum of the real solutions of

$\sqrt{a - \sqrt{a + x}} = x$

is equal to

$\textbf{(A)}\ \sqrt{a} - 1\qquad \textbf{(B)}\ \dfrac{\sqrt{a}- 1}{2}\qquad \textbf{(C)}\ \sqrt{a - 1}\qquad \textbf{(D)}\ \dfrac{\sqrt{a - 1}}{2}\qquad \textbf{(E)}\ \dfrac{\sqrt{4a- 3} - 1}{2}$

Solution

Problem 30

If $a$, $b$, $c$, and $d$ are the solutions of the equation $x^4 - bx - 3 = 0$, then an equation whose solutions are \[\dfrac {a + b + c}{d^2}, \dfrac {a + b + d}{c^2}, \dfrac {a + c + d}{b^2}, \dfrac {b + c + d}{a^2}\]is

$\textbf{(A)}\ 3x^4 + bx + 1 = 0\qquad \textbf{(B)}\ 3x^4 - bx + 1 = 0\qquad \textbf{(C)}\ 3x^4 + bx^3 - 1 = 0\qquad \\\textbf{(D)}\ 3x^4 - bx^3 - 1 = 0\qquad  \textbf{(E)}\ \text{none of these}$

Solution

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
1980 AHSME
Followed by
1982 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS