1983 AIME Problems/Problem 5

Revision as of 23:59, 23 July 2006 by Joml88 (talk | contribs)

Problem

Suppose that the sum of the squares of two complex numbers $x$ and $y$ is $7$ and the sum of the cubes is $10$. What is the largest real value of $x + y$ can have?

Solution

The best way to solve this problem seems to be by brute force.

$w^2+z^2=(w+z)^2-2wz=7$ and $w^3+z^3=(w+z)(w^2+z^2)-wz(w+z)=(w+z)(7)-wz(w+z)=(7-wz)(w+z)=10$

Because we are only left with $w+z$ and $wz$, substitution won't be too bad. Let $x=w+z$ and $y=wz$.

We get $x^2-2y=7$ and $x(7-y)=10$

Because we want the largest possible $x$, let's find an expression for $y$ in terms of $x$. $x^2-7=2y \implies y=\frac{x^2-7}{2}$.

Substituting, $x^3-21x+20=0$. Factored, $(x-1)(x+5)(x-4)=0$

The largest possible solution is therefore $4$.


See also