# Difference between revisions of "1988 AHSME Problems/Problem 10"

## Problem

In an experiment, a scientific constant $C$ is determined to be $2.43865$ with an error of at most $\pm 0.00312$. The experimenter wishes to announce a value for $C$ in which every digit is significant. That is, whatever $C$ is, the announced value must be the correct result when $C$ is rounded to that number of digits. The most accurate value the experimenter can announce for $C$ is

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 2.4\qquad \textbf{(C)}\ 2.43\qquad \textbf{(D)}\ 2.44\qquad \textbf{(E)}\ 2.439$

## Solution

If added together, we have: $$2.43865+0.00312=2.44177$$ This rounds to $2.4$If they subtracted, we have: $$2.43865-0.00312=2.43553.$$ This rounds to $2.4$. Therefore, we have the answer to be $\fbox{\textbf{(D)} 2.4}$.

 1988 AHSME (Problems • Answer Key • Resources) Preceded byProblem 9 Followed byProblem 11 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions