# 1988 AHSME Problems/Problem 13

## Problem

If $\sin(x) =3 \cos(x)$ then what is $\sin(x) \cdot \cos(x)$?

$\textbf{(A)}\ \frac{1}{6}\qquad \textbf{(B)}\ \frac{1}{5}\qquad \textbf{(C)}\ \frac{2}{9}\qquad \textbf{(D)}\ \frac{1}{4}\qquad \textbf{(E)}\ \frac{3}{10}$

## Solution

In the problem we are given that $\sin{(x)}=3\cos{(x)}$, and we want to find $\sin{(x)}\cos{(x)}$. We can divide both sides of the original equation by $\cos{(x)}$ to get $$\frac{\sin{(x)}}{\cos{(x)}}=\tan{(x)}=3.$$ We can now use right triangle trigonometry to finish the problem. $[asy] pair A,B,C; A = (0,0); B = (3,0); C = (0,1); draw(A--B--C--A); draw(rightanglemark(B,A,C,8)); label("A",A,SW); label("B",B,SE); label("C",C,N); label("3",B/2,S); label("1",C/2,W); label("\sqrt{10}",(C+B)/2,NE); [/asy]$

Since the problem asks us to find $\sin{(x)}\cos{(x)}$. $$\sin{(x)}\cos{(x)}=\left(\frac{3}{\sqrt{10}}\right)\left(\frac{1}{\sqrt{10}}\right)=\frac{3}{10}.$$ So $\boxed{\textbf{(E)}\ \frac{3}{10}}$ is our answer.