Difference between revisions of "1996 AIME Problems/Problem 5"

m (Solution)
(Solution)
 
Line 2: Line 2:
 
Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>.
 
Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>.
  
== Solution ==
+
== Solution 1 ==
 
By [[Vieta's formulas]] on the polynomial <math>P(x) = x^3+3x^2+4x-11 = (x-a)(x-b)(x-c) = 0</math>, we have <math>a + b + c = s = -3</math>, <math>ab + bc + ca = 4</math>, and <math>abc = 11</math>. Then
 
By [[Vieta's formulas]] on the polynomial <math>P(x) = x^3+3x^2+4x-11 = (x-a)(x-b)(x-c) = 0</math>, we have <math>a + b + c = s = -3</math>, <math>ab + bc + ca = 4</math>, and <math>abc = 11</math>. Then
 
<center><math>t = -(a+b)(b+c)(c+a) = -(s-a)(s-b)(s-c) = -(-3-a)(-3-b)(-3-c)</math></center>
 
<center><math>t = -(a+b)(b+c)(c+a) = -(s-a)(s-b)(s-c) = -(-3-a)(-3-b)(-3-c)</math></center>
Line 14: Line 14:
 
t &= 11 + 3(4) + 9(-3) + 27 = 23\end{align*}</cmath>
 
t &= 11 + 3(4) + 9(-3) + 27 = 23\end{align*}</cmath>
  
 +
== Solution  2==
  
A third solution arises if it is seen that each term in the expansion of <math>(a+b)(b+c)(c+a)</math> has a total degree of 3.  Another way to get terms with degree 3 is to multiply out <math>(a+b+c)(ab+bc+ca)</math>.  Expanding both of these expressions and comparing them shows that:
+
Each term in the expansion of <math>(a+b)(b+c)(c+a)</math> has a total degree of 3.  Another way to get terms with degree 3 is to multiply out <math>(a+b+c)(ab+bc+ca)</math>.  Expanding both of these expressions and comparing them shows that:
  
 
<math>(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c)-abc</math>
 
<math>(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c)-abc</math>

Latest revision as of 21:34, 30 January 2018

Problem

Suppose that the roots of $x^3+3x^2+4x-11=0$ are $a$, $b$, and $c$, and that the roots of $x^3+rx^2+sx+t=0$ are $a+b$, $b+c$, and $c+a$. Find $t$.

Solution 1

By Vieta's formulas on the polynomial $P(x) = x^3+3x^2+4x-11 = (x-a)(x-b)(x-c) = 0$, we have $a + b + c = s = -3$, $ab + bc + ca = 4$, and $abc = 11$. Then

$t = -(a+b)(b+c)(c+a) = -(s-a)(s-b)(s-c) = -(-3-a)(-3-b)(-3-c)$

This is just the definition for $-P(-3) = \boxed{023}$.

Alternatively, we can expand the expression to get \begin{align*} t &= -(-3-a)(-3-b)(-3-c)\\  &= (a+3)(b+3)(c+3)\\  &= abc + 3[ab + bc + ca] + 9[a + b + c] + 27\\ t &= 11 + 3(4) + 9(-3) + 27 = 23\end{align*}

Solution 2

Each term in the expansion of $(a+b)(b+c)(c+a)$ has a total degree of 3. Another way to get terms with degree 3 is to multiply out $(a+b+c)(ab+bc+ca)$. Expanding both of these expressions and comparing them shows that:

$(a+b)(b+c)(c+a) = (ab+bc+ca)(a+b+c)-abc$ $t = -(a+b)(b+c)(c+a) = abc-(ab+bc+ca)(a+b+c) = 11-(4)(-3) = 23$

See also

1996 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS