Difference between revisions of "2002 AIME I Problems/Problem 10"

(Solution 2 (Desperate Bash))
m
Line 5: Line 5:
  
 
== Solution ==
 
== Solution ==
By the Pythagorean Theorem, <math>BC=35</math>. Letting <math>BD=x</math> we can use the angle bisector theorem on triangle <math>ABC</math> to get <math>x/12=(35-x)/37</math>, and solving gives <math>BD=60/7</math> and <math>DC=185/7</math>.
+
By the Pythagorean Theorem, <math>BC=35</math>. Letting <math>BD=x</math> we can use the Angle Bisector Theorem on triangle <math>ABC</math> to get <math>x/12=(35-x)/37</math>, and solving gives <math>BD=60/7</math> and <math>DC=185/7</math>.
  
 
The area of triangle <math>AGF</math> is <math>10/3</math> that of triangle <math>AEG</math>, since they share a common side and angle, so the area of triangle <math>AGF</math> is <math>10/13</math> the area of triangle <math>AEF</math>.
 
The area of triangle <math>AGF</math> is <math>10/3</math> that of triangle <math>AEG</math>, since they share a common side and angle, so the area of triangle <math>AGF</math> is <math>10/13</math> the area of triangle <math>AEF</math>.

Revision as of 23:35, 26 July 2016

Problem

In the diagram below, angle $ABC$ is a right angle. Point $D$ is on $\overline{BC}$, and $\overline{AD}$ bisects angle $CAB$. Points $E$ and $F$ are on $\overline{AB}$ and $\overline{AC}$, respectively, so that $AE=3$ and $AF=10$. Given that $EB=9$ and $FC=27$, find the integer closest to the area of quadrilateral $DCFG$.

AIME 2002I Problem 10.png

Solution

By the Pythagorean Theorem, $BC=35$. Letting $BD=x$ we can use the Angle Bisector Theorem on triangle $ABC$ to get $x/12=(35-x)/37$, and solving gives $BD=60/7$ and $DC=185/7$.

The area of triangle $AGF$ is $10/3$ that of triangle $AEG$, since they share a common side and angle, so the area of triangle $AGF$ is $10/13$ the area of triangle $AEF$.

Since the area of a triangle is $\frac{ab\sin{C}}2$, the area of $AEF$ is $525/37$ and the area of $AGF$ is $5250/481$.

The area of triangle $ABD$ is $360/7$, and the area of the entire triangle $ABC$ is $210$. Subtracting the areas of $ABD$ and $AGF$ from $210$ and finding the closest integer gives $\boxed{148}$ as the answer.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png