Difference between revisions of "2002 AIME I Problems/Problem 4"

m (Made the asterisk note at the end more obvious that it refers to the asterisk, got rid of that weird extra plus, and changed the wording a tiny bit)
m (Changed the wording a tiny bit again to make it clearer.)
Line 7: Line 7:
 
<math>a_m+a_{m+1}+\cdots +a_{n-1}=\dfrac{1}{m}-\dfrac{1}{m+1}+\dfrac{1}{m+1}-\dfrac{1}{m+2}+\cdots +\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{1}{m}-\dfrac{1}{n}</math>
 
<math>a_m+a_{m+1}+\cdots +a_{n-1}=\dfrac{1}{m}-\dfrac{1}{m+1}+\dfrac{1}{m+1}-\dfrac{1}{m+2}+\cdots +\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{1}{m}-\dfrac{1}{n}</math>
  
Which means
+
Which means that
  
 
<math>\dfrac{n-m}{mn}=\dfrac{1}{29}</math>
 
<math>\dfrac{n-m}{mn}=\dfrac{1}{29}</math>
  
Since we need a 29 in the denominator, we let <math>n=29t</math>.* Substituting, we get
+
Since we need a factor of 29 in the denominator, we let <math>n=29t</math>.* Substituting, we get
  
 
<math>29t-m=mt</math>
 
<math>29t-m=mt</math>
 +
 +
so
  
 
<math>\frac{29t}{t+1} = m</math>
 
<math>\frac{29t}{t+1} = m</math>
  
Since m is an integer, <math>t+1 = 29</math>, or <math>t=28</math>. It quickly follows that <math>n=29(28)</math> and <math>m=28</math>, so <math>m+n = 30(28) = \fbox{840}</math>.
+
Since <math>m</math> is an integer, <math>t+1 = 29</math>, so <math>t=28</math>. It quickly follows that <math>n=29(28)</math> and <math>m=28</math>, so <math>m+n = 30(28) = \fbox{840}</math>.
  
 
  *If <math>m=29t</math>, a similar argument to the one above implies <math>m=29(28)</math> and <math>n=28</math>, which implies <math>m>n</math>. This is impossible since <math>n-m>0</math>.
 
  *If <math>m=29t</math>, a similar argument to the one above implies <math>m=29(28)</math> and <math>n=28</math>, which implies <math>m>n</math>. This is impossible since <math>n-m>0</math>.

Revision as of 23:18, 11 July 2017

Problem

Consider the sequence defined by $a_k =\dfrac{1}{k^2+k}$ for $k\geq 1$. Given that $a_m+a_{m+1}+\cdots+a_{n-1}=\dfrac{1}{29}$, for positive integers $m$ and $n$ with $m<n$, find $m+n$.

Solution

$\dfrac{1}{k^2+k}=\dfrac{1}{k(k+1)}=\dfrac{1}{k}-\dfrac{1}{k+1}$. Thus,

$a_m+a_{m+1}+\cdots +a_{n-1}=\dfrac{1}{m}-\dfrac{1}{m+1}+\dfrac{1}{m+1}-\dfrac{1}{m+2}+\cdots +\dfrac{1}{n-1}-\dfrac{1}{n}=\dfrac{1}{m}-\dfrac{1}{n}$

Which means that

$\dfrac{n-m}{mn}=\dfrac{1}{29}$

Since we need a factor of 29 in the denominator, we let $n=29t$.* Substituting, we get

$29t-m=mt$

so

$\frac{29t}{t+1} = m$

Since $m$ is an integer, $t+1 = 29$, so $t=28$. It quickly follows that $n=29(28)$ and $m=28$, so $m+n = 30(28) = \fbox{840}$.

*If $m=29t$, a similar argument to the one above implies $m=29(28)$ and $n=28$, which implies $m>n$. This is impossible since $n-m>0$.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png