Difference between revisions of "2002 AMC 10A Problems"

(Problem 25: lenghts)
(Problem 16)
Line 113: Line 113:
 
Let <math>\text{a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}</math>. What is <math>\text{a + b + c + d}</math>?
 
Let <math>\text{a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}</math>. What is <math>\text{a + b + c + d}</math>?
  
<math>\text{(A)}\ -5 \qquad \text{(B)}\ -7/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5</math>
+
<math>\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5</math>
  
 
[[2002 AMC 10A Problems/Problem 16|Solution]]
 
[[2002 AMC 10A Problems/Problem 16|Solution]]

Revision as of 15:20, 26 December 2008

Problem 1

The ratio $\frac{10^{2000}+10^{2002}}{10^{2001}+10^{2001}}$ is closest to which of the following numbers?

$\text{(A)}\ 0.1 \qquad \text{(B)}\ 0.2 \qquad \text{(C)}\ 1 \qquad \text{(D)}\ 5 \qquad \text{(E)}\ 10$

Solution

Problem 2

Given that a, b, and c are non-zero real numbers, define $(a, b, c) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$, find $(2, 12, 9)$.

$\text{(A)}\ 4 \qquad \text{(B)}\ 5 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 8$

Solution

Problem 3

Solution

Problem 4

For how many positive integers m is there at least 1 positive integer n such that $mn \le m + n$?

$\text{(A)}\ 4 \qquad \text{(B)}\ 6 \qquad \text{(C)}\ 9 \qquad \text{(D)}\ 12 \qquad \text{(E)}$ Infinite


Solution

Problem 5

Solution

Problem 6

From a starting number, Cindy was supposed to subtract 3, and then divide by 9, but instead, Cindy subtracted 9, then divided by 3, getting 43. If the correct instructions were followed, what would the result be?

$\text{(A)}\ 15 \qquad \text{(B)}\ 34 \qquad \text{(C)}\ 43 \qquad \text{(D)}\ 51 \qquad \text{(E)} 138$

Solution

Problem 7

A $45^\circ$ arc of circle A is equal in length to a $30^\circ$ arc of circle B. What is the ratio of circle A's area and circle B's area?

$\text{(A)}\ 4/9 \qquad \text{(B)}\ 2/3 \qquad \text{(C)}\ 5/6 \qquad \text{(D)}\ 3/2 \qquad \text{(E)}\ 9/4$

Solution

Problem 8

Solution

Problem 9

There are 3 numbers A, B, and C, such that $1001C - 2002A = 4004$, and $1001B + 3003A = 5005$. What is the average of A, B, and C?

$\text{(A)}\ 1 \qquad \text{(B)}\ 3 \qquad \text{(C)}\ 6 \qquad \text{(D)}\ 9 \qquad \text{(E)}$ More than 1


Solution

Problem 10

What is the sum of all of the roots of $(2x + 3) (x - 4) + (2x + 3) (x - 6) = 0$?

$\text{(A)}\ 7/2 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 13$

Solution

Problem 11

Jamal wants to save 30 files onto disks, each with 1.44 MB space. 3 of the files take up 0.8 MB, 12 of the files take up 0.7 MB, and the rest take up 0.4 MB. It is not possible to split a file onto 2 different disks. What is the smallest number of disks needed to store all 30 files?

$\text{(A)}\ 12 \qquad \text{(B)}\ 13 \qquad \text{(C)}\ 14 \qquad \text{(D)}\ 15 \qquad \text{(E)} 16$

Solution

Problem 12

Mr. Bird gets up every day at 8:00 AM to go to work. If he drives at an average speed of 40 miles per hour, he will be late by 3 minutes. If he drives at an average speed of 60 miles per hour, he will be early by 3 minutes. How many miles per hour does Mr. Bird need to drive to get to work exactly on time?

$\text{(A)}\ 45 \qquad \text{(B)}\ 48 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 55 \qquad \text{(E)} 58$

Solution

Problem 13

Give a triangle with side lengths 15, 20, and 25, find the triangle's smallest height.

$\text{(A)}\ 6 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 12.5 \qquad \text{(D)}\ 13 \qquad \text{(E)}\ 15$

Solution

Problem 14

The 2 roots of the quadratic $x^2 - 63x + k = 0$ are both prime. How many values of k are there?

$\text{(A)}\ 0 \qquad \text{(B)}\ 1 \qquad \text{(C)}\ 2 \qquad \text{(D)}\ 4 \qquad \text{(E)}&$ (Error compiling LaTeX. ! Misplaced alignment tab character &.)More than 4

Solution

Problem 15

Using the digits 1, 2, 3, 4, 5, 6, 7, and 9, form 4 two-digit prime numbers, using each digit only once. What is the sum of the 4 prime numbers?

$\text{(A)}\ 150 \qquad \text{(B)}\ 160 \qquad \text{(C)}\ 170 \qquad \text{(D)}\ 180 \qquad \text{(E)}\ 190$

Solution

Problem 16

Let $\text{a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}$. What is $\text{a + b + c + d}$?

$\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5$

Solution

Problem 17

Sarah pours 4 ounces of coffee into a cup that can hold 8 ounces. Then she pours 4 ounces of butter into a second cup that can also hold 8 ounces. She then pours half of the contents of the first cup into the second cup, completely mixes the contents of the second cup, then pours half of the contents of the second cup back into the first cup. What fraction of the contents in the first cup is butter?

$\text{(A)}\ 1/4 \qquad \text{(B)}\ 1/3 \qquad \text{(C)}\ 3/8 \qquad \text{(D)}\ 2/5 \qquad \text{(E)} 1/2$

Solution

Problem 18

A 3x3x3 cube is made of 27 normal dice. Each die's opposite sides sum to 7. What is the smallest possible sum of all of the values visible on the 6 faces of the large cube?

$\text{(A)}\ 60 \qquad \text{(B)}\ 72 \qquad \text{(C)}\ 84 \qquad \text{(D)}\ 90 \qquad \text{(E)} 96$

Solution

Problem 19

Solution

Problem 20

Solution

Problem 21

There are 8 integers, whose average, median, unique mode, and range are all 8. Which of the following cannot be the largest of the 8 numbers?

$\text{(A)}\ 11 \qquad \text{(B)}\ 12 \qquad \text{(C)}\ 13 \qquad \text{(D)}\ 14 \qquad \text{(E)}\ 15$

Solution

Problem 22

A set of tiles numbered 1 through 100 is modified repeatedly by the following operation: remove all tiles numbered with a perfect square, and renumber the remaining tiles consecutively starting with 1. How many times must the operation be performed to reduce the number of tiles in the set to one?

$\text{(A)}\ 10 \qquad \text{(B)}\ 11 \qquad \text{(C)}\ 18 \qquad \text{(D)}\ 19 \qquad \text{(E)}\ 20$

Solution

Problem 23

Solution

Problem 24

Tina randomly selects two distinct numbers from the set {1, 2, 3, 4, 5}, and Sergio randomly selects a number from the set {1, 2, ..., 10}. What is the probability that Sergio's number is larger than the sum of the two numbers chosen by Tina?

$\text{(A)}\ 2/5 \qquad \text{(B)}\ 9/20 \qquad \text{(C)}\ 1/2 \qquad \text{(D)}\ 11/20 \qquad \text{(E)}\ 24/25$

Solution

Problem 25

[asy] pair A,B,C,D; A=(0,0); B=(52,0); C=(38,20); D=(5,20); dot(A); dot(B); dot(C); dot(D); draw(A--B--C--D--cycle); label("$A$",A,S); label("$B$",B,S); label("$C$",C,N); label("$D$",D,N); label("52",(A+B)/2,S); label("39",(C+D)/2,N); label("12",(B+C)/2,E); label("5",(D+A)/2,W); [/asy] In trapezoid $ABCD$ with bases $AB$ and $CD$, we have $AB = 52$, $BC = 12$, $CD = 39$, and $DA = 5$ (diagram not to scale). The area of $ABCD$ is

$\text{(A)}\ 182 \qquad \text{(B)}\ 195 \qquad \text{(C)}\ 210 \qquad \text{(D)}\ 234 \qquad \text{(E)}\ 260$

Solution

See also

Invalid username
Login to AoPS