Difference between revisions of "2002 AMC 10A Problems/Problem 18"

(New page: == Problem == A 3x3x3 cube is made of 27 normal dice. Each die's opposite sides sum to 7. What is the smallest possible sum of all of the values visible on the 6 faces of the large cube?...)
 
Line 12: Line 12:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Revision as of 11:13, 4 July 2013

Problem

A 3x3x3 cube is made of 27 normal dice. Each die's opposite sides sum to 7. What is the smallest possible sum of all of the values visible on the 6 faces of the large cube?

$\text{(A)}\ 60 \qquad \text{(B)}\ 72 \qquad \text{(C)}\ 84 \qquad \text{(D)}\ 90 \qquad \text{(E)} 96$

Solution

In a 3x3x3 cube, there are 8 cubes with three faces showing, 12 with two faces showing and 6 with one face showing. The smallest sum with three faces showing is 1+2+3=6, with two faces showing is 1+2=3, and with one face showing is 1. Hence, the smallest possible sum is $8(6)+12(3)+6(1)=48+36+6=90$. Our answer is thus $\boxed{\text{(D)}\ 90}$.

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png