Difference between revisions of "2002 AMC 10B Problems/Problem 19"
Onomatopoeia (talk | contribs) (→Solution 2) |
Onomatopoeia (talk | contribs) (→Solution 3) |
||
Line 61: | Line 61: | ||
<math>x=0.01=\boxed{(C)\0.01}</math> | <math>x=0.01=\boxed{(C)\0.01}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See Also== | ==See Also== |
Revision as of 13:40, 8 January 2015
Contents
Problem
Suppose that is an arithmetic sequence with What is the value of
Solution 1
Adding the two given equations together gives
.
Now, let the common difference be . Notice that , so we merely need to find to get the answer. The formula for an arithmetic sum is
,
where is the first term, is the number of terms, and is the common difference. Now we use this formula to find a closed form for the first given equation and the sum of the given equations. For the first equation, we have . Therefore, we have
,
or
. *(1)
For the sum of the equations (shown at the beginning of the solution) we have , so
or
*(2)
Now we have a system of equations in terms of and . Subtracting (1) from (2) eliminates , yielding , and .
Solution 2
Subtracting the 2 given equations yields
Now express each a_n in terms of first term a_1 and common difference x between consecutive terms
Simplifying and canceling a_1 and x terms gives
$x=0.01=\boxed{(C)\0.01}$ (Error compiling LaTeX. ! Undefined control sequence.)
See Also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.