# 2002 AMC 12B Problems/Problem 24

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

A convex quadrilateral $ABCD$ with area $2002$ contains a point $P$ in its interior such that $PA = 24, PB = 32, PC = 28, PD = 45$. Find the perimeter of $ABCD$. $\mathrm{(A)}\ 4\sqrt{2002} \qquad \mathrm{(B)}\ 2\sqrt{8465} \qquad \mathrm{(C)}\ 2$ $(48+\sqrt{2002}) \qquad \mathrm{(D)}\ 2\sqrt{8633} \qquad \mathrm{(E)}\ 4(36 + \sqrt{113})$

## Solution

We have $$[ABCD] = 2002 \le \frac 12 (AC \cdot BD)$$ (This is true for any convex quadrilateral: split the quadrilateral along $AC$ and then using the triangle area formula to evaluate $[ACB]$ and $[ACD]$), with equality only if $\overline{AC} \perp \overline{BD}$. By the triangle inequality, \begin{align*}AC &\le PA + PC = 52\\ BD &\le PB + PD = 77\end{align*}

with equality if $P$ lies on $\overline{AC}$ and $\overline{BD}$ respectively. Thus $$2002 \le \frac{1}{2} AC \cdot BD \le \frac 12 \cdot 52 \cdot 77 = 2002$$

Since we have the equality case, $\overline{AC} \perp \overline{BD}$ at point $P$, as shown below. $[asy] size(200); defaultpen(0.6); pair A = (0,0), B = (40,0), C = (25.6 * 52 / 24, 19.2 * 52 / 24), D = (40 - (40-25.6)*77/32,19.2*77/32), P = (25.6,19.2), Q = (25.6, 18.5); pair E=(A+P)/2, F=(B+P)/2, G=(C+P)/2, H=(D+P)/2; draw(A--B--C--D--cycle); draw(A--P--B--P--C--P--D); label("$$A$$",A,WSW); label("$$B$$",B,ESE); label("$$C$$",C,ESE); label("$$D$$",D,NW); label("$$P$$",Q,SSW); label("24",E,WNW); label("32",F,WSW); label("28",G,ESE); label("45",H,ENE); draw(rightanglemark(C,P,D,50)); [/asy]$

By the Pythagorean Theorem, \begin{align*} AB = \sqrt{PA^2 + PB^2} & = \sqrt{24^2 + 32^2} = 40\\ BC = \sqrt{PB^2 + PC^2} & = \sqrt{32^2 + 28^2} = 4\sqrt{113}\\ CD = \sqrt{PC^2 + PD^2} & = \sqrt{28^2 + 45^2} = 53\\ DA = \sqrt{PD^2 + PA^2} & = \sqrt{45^2 + 24^2} = 51 \end{align*}

The perimeter of $ABCD$ is $AB + BC + CD + DA = 4(36 + \sqrt{113}) \Rightarrow \mathrm{(E)}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 