Difference between revisions of "2002 AMC 12B Problems/Problem 9"

(New page: The answer is 1/4. The arithmetic sequence doesn't require much thought as it is 1,2,3,4. The geometric sequence is 1,2,4.)
 
m (Solution 1)
 
(9 intermediate revisions by 6 users not shown)
Line 1: Line 1:
The answer is 1/4.
+
==Problem==
 +
If <math>a,b,c,d</math> are positive real numbers such that <math>a,b,c,d</math> form an increasing arithmetic sequence and <math>a,b,d</math> form a geometric sequence, then <math>\frac ad</math> is
  
The arithmetic sequence doesn't require much thought as it is 1,2,3,4.
+
<math>\mathrm{(A)}\ \frac 1{12}
 +
\qquad\mathrm{(B)}\ \frac 16
 +
\qquad\mathrm{(C)}\ \frac 14
 +
\qquad\mathrm{(D)}\ \frac 13
 +
\qquad\mathrm{(E)}\ \frac 12</math>
  
The geometric sequence is 1,2,4.
+
==Solution==
 +
=== Solution 1 ===
 +
We can let <math>a=1</math>, <math>b=2</math>, <math>c=3</math>, and <math>d=4</math>. <math>\frac{a}{d}=\boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}</math>
 +
 
 +
=== Solution 2 ===
 +
 
 +
As <math>a, b, d</math> is a geometric sequence, let <math>b=ka</math> and <math>d=k^2a</math> for some <math>k>0</math>.
 +
 
 +
Now, <math>a, b, c, d</math> is an arithmetic sequence. Its difference is <math>b-a=(k-1)a</math>. Thus <math>d=a + 3(k-1)a = (3k-2)a</math>.
 +
 
 +
Comparing the two expressions for <math>d</math> we get <math>k^2=3k-2</math>. The positive solution is <math>k=2</math>, and <math>\frac{a}{d}=\frac{a}{k^2a}=\frac{1}{k^2}=\boxed{\frac{1}{4}} \Longrightarrow \mathrm{(C)}</math>.
 +
 
 +
=== Solution 3 ===
 +
Letting <math>n</math> be the common difference of the arithmetic progression, we have
 +
<math>b = a + n</math>, <math>c = a + 2n</math>, <math>d = a + 3n</math>. We are given that <math>b / a</math> = <math>d / b</math>, or
 +
<cmath>\frac{a + n}{a} = \frac{a + 3n}{a + n}.</cmath>
 +
Cross-multiplying, we get
 +
<cmath>a^2 + 2an + n^2 = a^2 + 3an</cmath>
 +
<cmath>n^2 = an</cmath>
 +
<cmath>n = a</cmath>
 +
So <math>\frac{a}{d} = \frac{a}{a + 3n} = \frac{a}{4a} = \boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}</math>.
 +
 
 +
==See also==
 +
{{AMC12 box|year=2002|ab=B|num-b=8|num-a=10}}
 +
 
 +
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 21:42, 11 December 2017

Problem

If $a,b,c,d$ are positive real numbers such that $a,b,c,d$ form an increasing arithmetic sequence and $a,b,d$ form a geometric sequence, then $\frac ad$ is

$\mathrm{(A)}\ \frac 1{12} \qquad\mathrm{(B)}\ \frac 16 \qquad\mathrm{(C)}\ \frac 14 \qquad\mathrm{(D)}\ \frac 13 \qquad\mathrm{(E)}\ \frac 12$

Solution

Solution 1

We can let $a=1$, $b=2$, $c=3$, and $d=4$. $\frac{a}{d}=\boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}$

Solution 2

As $a, b, d$ is a geometric sequence, let $b=ka$ and $d=k^2a$ for some $k>0$.

Now, $a, b, c, d$ is an arithmetic sequence. Its difference is $b-a=(k-1)a$. Thus $d=a + 3(k-1)a = (3k-2)a$.

Comparing the two expressions for $d$ we get $k^2=3k-2$. The positive solution is $k=2$, and $\frac{a}{d}=\frac{a}{k^2a}=\frac{1}{k^2}=\boxed{\frac{1}{4}} \Longrightarrow \mathrm{(C)}$.

Solution 3

Letting $n$ be the common difference of the arithmetic progression, we have $b = a + n$, $c = a + 2n$, $d = a + 3n$. We are given that $b / a$ = $d / b$, or \[\frac{a + n}{a} = \frac{a + 3n}{a + n}.\] Cross-multiplying, we get \[a^2 + 2an + n^2 = a^2 + 3an\] \[n^2 = an\] \[n = a\] So $\frac{a}{d} = \frac{a}{a + 3n} = \frac{a}{4a} = \boxed{\frac{1}{4}}  \Longrightarrow \mathrm{(C)}$.

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png