Difference between revisions of "2004 AMC 12A Problems/Problem 18"

(sol, {{dup}})
Line 1: Line 1:
 +
{{duplicate|[[2004 AMC 12A Problems|2004 AMC 12A #18]] and [[2004 AMC 10A Problems/Problem 22|2004 AMC 10A #22]]}}
 +
 
==Problem==
 
==Problem==
Square <math>ABCD</math> has side length 2. A semicircle with diameter <math>\overline{AB}</math> is constructed inside the square, and the tangent to the semicircle from <math>C</math> intersects side <math>\overline{AD}</math> at <math>E</math>. What is the length of <math>\overline{CE}</math>?
+
[[Square]] <math>ABCD</math> has side length <math>2</math>. A [[semicircle]] with [[diameter]] <math>\overline{AB}</math> is constructed inside the square, and the [[tangent (geometry)|tangent]] to the semicircle from <math>C</math> intersects side <math>\overline{AD}</math> at <math>E</math>. What is the length of <math>\overline{CE}</math>?
  
 
<center>[[Image:AMC10_2004A_22.png]]</center>
 
<center>[[Image:AMC10_2004A_22.png]]</center>
Line 6: Line 8:
 
<math> \mathrm{(A) \ } \frac{2+\sqrt{5}}{2} \qquad \mathrm{(B) \ } \sqrt{5} \qquad \mathrm{(C) \ } \sqrt{6} \qquad \mathrm{(D) \ } \frac{5}{2} \qquad \mathrm{(E) \ } 5-\sqrt{5} </math>
 
<math> \mathrm{(A) \ } \frac{2+\sqrt{5}}{2} \qquad \mathrm{(B) \ } \sqrt{5} \qquad \mathrm{(C) \ } \sqrt{6} \qquad \mathrm{(D) \ } \frac{5}{2} \qquad \mathrm{(E) \ } 5-\sqrt{5} </math>
  
 +
__TOC__
 
==Solution==
 
==Solution==
 +
=== Solution 1 ===
 +
Let the point of tangency be <math>F</math>. By the [[Two Tangent Theorem]] <math>BC = FC = 2</math> and <math>AE = EF = x</math>. Thus <math>DE = 2-x</math>. The [[Pythagorean Theorem]] on <math>\triangle CDE</math> yields
 +
 +
<cmath>\begin{eqnarray*}(2-x)^2 + 2^2 &=& (2+x)^2\\
 +
x^2 - 4x + 8 &=& x^2 + 4x + 4\\
 +
x &=& \frac{1}{2}\end{eqnarray*}</cmath>
 +
 +
Hence <math>CE = FC + x = \frac{5}{2} \Rightarrow \mathrm{(D)}</math>.
 +
 +
=== Solution 2 ===
 +
[[Image:2004_AMC12A-18.png]]
 +
 +
Clearly, <math>EA = EF = BG</math>. Thus, the sides of [[right triangle]] <math>CDE</math> are in arithmetic progression. Thus it is [[similar triangles|similar]] to the triangle <math>3 - 4 - 5</math> and since <math>DC = 2</math>, <math>CE = 5/2</math>.
 +
 
== See also ==
 
== See also ==
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131334 AoPS topic]
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131334 AoPS topic]
 +
{{AMC12 box|year=2004|ab=A|num-b=17|num-a=19}}
 
{{AMC10 box|year=2004|ab=A|num-b=21|num-a=23}}
 
{{AMC10 box|year=2004|ab=A|num-b=21|num-a=23}}
 +
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 21:31, 3 December 2007

The following problem is from both the 2004 AMC 12A #18 and 2004 AMC 10A #22, so both problems redirect to this page.

Problem

Square $ABCD$ has side length $2$. A semicircle with diameter $\overline{AB}$ is constructed inside the square, and the tangent to the semicircle from $C$ intersects side $\overline{AD}$ at $E$. What is the length of $\overline{CE}$?

AMC10 2004A 22.png

$\mathrm{(A) \ } \frac{2+\sqrt{5}}{2} \qquad \mathrm{(B) \ } \sqrt{5} \qquad \mathrm{(C) \ } \sqrt{6} \qquad \mathrm{(D) \ } \frac{5}{2} \qquad \mathrm{(E) \ } 5-\sqrt{5}$

Solution

Solution 1

Let the point of tangency be $F$. By the Two Tangent Theorem $BC = FC = 2$ and $AE = EF = x$. Thus $DE = 2-x$. The Pythagorean Theorem on $\triangle CDE$ yields

\begin{eqnarray*}(2-x)^2 + 2^2 &=& (2+x)^2\\ x^2 - 4x + 8 &=& x^2 + 4x + 4\\ x &=& \frac{1}{2}\end{eqnarray*}

Hence $CE = FC + x = \frac{5}{2} \Rightarrow \mathrm{(D)}$.

Solution 2

2004 AMC12A-18.png

Clearly, $EA = EF = BG$. Thus, the sides of right triangle $CDE$ are in arithmetic progression. Thus it is similar to the triangle $3 - 4 - 5$ and since $DC = 2$, $CE = 5/2$.

See also

2004 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2004 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions