# 2005 AMC 12A Problems/Problem 7

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

## Problem

Square $EFGH$ is inside the square $ABCD$ so that each side of $EFGH$ can be extended to pass through a vertex of $ABCD$. Square $ABCD$ has side length $\sqrt {50}$ and $BE = 1$. What is the area of the inner square $EFGH$?

$(\mathrm {A}) \ 25 \qquad (\mathrm {B}) \ 32 \qquad (\mathrm {C})\ 36 \qquad (\mathrm {D}) \ 40 \qquad (\mathrm {E})\ 42$

## Solution

Arguable the hardest part of this question is to visualize the diagram. Since each side of $EFGH$ can be extended to pass through a vertex of $ABCD$, we realize that $EFGH$ must be tilted in such a fashion. Let a side of $EFGH$ be $x$.

Notice the right triangle (in blue) with legs $1, x+1$ and hypotenuse $\sqrt{50}$. By the Pythagorean Theorem, we have $1^2 + (x+1)^2 = (\sqrt{50})^2 \Longrightarrow (x+1)^2 = 49 \Longrightarrow x = 6$. Thus, $[EFGH] = x^2 = 36\ \mathrm{(C)}$

 2005 AMC 12A (Problems • Answer Key • Resources) Preceded byProblem 6 Followed byProblem 8 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions