Difference between revisions of "2006 AIME I Problems/Problem 2"

m (wik, i don't think this falls under combinatorics..)
m (rv)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
+
Let [[set]] <math> \mathcal{A} </math> be a 90-[[element]] [[subset]] of <math> \{1,2,3,\ldots,100\}, </math> and let <math> S </math> be the sum of the elements of <math> \mathcal{A}. </math> Find the number of possible values of <math> S. </math>
The lengths of the sides of a [[triangle]] with positive area are <math>\log_{10} 12</math>, <math>\log_{10} 75</math>, and <math>\log_{10} n</math>, where <math>n</math> is a positive integer. Find the number of possible values for <math>n</math>.
 
  
 
== Solution ==
 
== Solution ==
By the [[Triangle Inequality]]:
+
The smallest <math>S</math> is <math>1+2+ \ldots +90 = 91 \cdot 45 = 4095</math>. The largest <math>S</math> is <math>11+12+ \ldots +100=111\cdot 45=4995</math>. All numbers between <math>4095</math> and <math>4995</math> are possible values of S, so the number of possible values of S is <math>4995-4095+1=901</math>.
<div style="text-align:center;">
 
<math>\log_{10} 12 + \log_{10} n > \log_{10} 75 </math>
 
 
 
<math>\log_{10} 12n > \log_{10} 75 </math>
 
 
 
<math> 12n > 75 </math>  
 
 
 
<math> n > \frac{75}{12} = \frac{25}{4} = 6.25 </math>
 
</div>
 
Also:
 
<div style="text-align:center;">
 
<math>\log_{10} 12 + \log_{10} 75 > \log_{10} n </math>
 
 
 
<math>\log_{10} 12\cdot75 > \log_{10} n </math>
 
 
 
<math> n < 900 </math>  
 
</div>
 
Combining these two inequalities:
 
 
 
<cmath> 6.25 < n < 900 </cmath>
 
 
 
The number of possible integer values for <math>n</math> is the number of integers over the interval <math>(6.25 , 900)</math>, which is <math>893</math>.
 
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2006|n=I|num-b=1|num-a=3}}
 
{{AIME box|year=2006|n=I|num-b=1|num-a=3}}
  
[[Category:Intermediate Geometry Problems]]
+
[[Category:Intermediate Combinatorics Problems]]
[[Category:Intermediate Algebra Problems]]
 

Revision as of 19:23, 25 September 2007

Problem

Let set $\mathcal{A}$ be a 90-element subset of $\{1,2,3,\ldots,100\},$ and let $S$ be the sum of the elements of $\mathcal{A}.$ Find the number of possible values of $S.$

Solution

The smallest $S$ is $1+2+ \ldots +90 = 91 \cdot 45 = 4095$. The largest $S$ is $11+12+ \ldots +100=111\cdot 45=4995$. All numbers between $4095$ and $4995$ are possible values of S, so the number of possible values of S is $4995-4095+1=901$.

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions