2006 AIME I Problems/Problem 3

Revision as of 17:42, 25 June 2017 by Mathematical-phi (talk | contribs) (Solution 2)

Problem

Find the least positive integer such that when its leftmost digit is deleted, the resulting integer is $\frac{1}{29}$ of the original integer.

Solution

Solution 1

Suppose the original number is $N = \overline{a_na_{n-1}\ldots a_1a_0},$ where the $a_i$ are digits and the first digit, $a_n,$ is nonzero. Then the number we create is $N_0 = \overline{a_{n-1}\ldots a_1a_0},$ so \[N = 29N_0.\] But $N$ is $N_0$ with the digit $a_n$ added to the left, so $N = N_0 + a_n \cdot 10^n.$ Thus, \[N_0 + a_n\cdot 10^n = 29N_0\] \[a_n \cdot 10^n = 28N_0.\] The right-hand side of this equation is divisible by seven, so the left-hand side must also be divisible by seven. The number $10^n$ is never divisible by $7,$ so $a_n$ must be divisible by $7.$ But $a_n$ is a nonzero digit, so the only possibility is $a_n = 7.$ This gives \[7 \cdot 10^n = 28N_0\] or \[10^n = 4N_0.\] Now, we want to minimize both $n$ and $N_0,$ so we take $N_0 = 25$ and $n = 2.$ Then \[N = 7 \cdot 10^2 + 25 = \boxed{725},\] and indeed, $725 = 29 \cdot 25.$ $\square$

Solution 1

Suppose the original number is $N = \overline{a_na_{n-1}\ldots a_1a_0},$ where the $a_i$ are digits and the first digit, $a_n,$ is nonzero. Then the number we create is $N_0 = \overline{a_{n-1}\ldots a_1a_0},$ so \[N = 29N_0.\] But $N$ is $N_0$ with the digit $a_n$ added to the left, so $N = N_0 + a_n \cdot 10^n.$ Thus, \[N_0 + a_n\cdot 10^n = 29N_0\] \[a_n \cdot 10^n = 28N_0.\] The right-hand side of this equation is divisible by seven, so the left-hand side must also be divisible by seven. The number $10^n$ is never divisible by $7,$ so $a_n$ must be divisible by $7.$ But $a_n$ is a nonzero digit, so the only possibility is $a_n = 7.$ This gives \[7 \cdot 10^n = 28N_0\] or \[10^n = 4N_0.\] Now, we want to minimize both $n$ and $N_0,$ so we take $N_0 = 25$ and $n = 2.$ Then \[N = 7 \cdot 10^2 + 25 = \boxed{725},\] and indeed, $725 = 29 \cdot 25.$ $\square$

See also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS