Difference between revisions of "2007 AMC 12A Problems/Problem 24"
(New page: == Problem == For each integer <math>n>1</math>, let <math>F(n)</math> be the number of solutions to the equation <math>\sin{x}=\sin{(nx)}</math> on the interval <math>[0,\pi]</math>. Wha...) |
(→Problem) |
||
Line 3: | Line 3: | ||
For each integer <math>n>1</math>, let <math>F(n)</math> be the number of solutions to the equation <math>\sin{x}=\sin{(nx)}</math> on the interval <math>[0,\pi]</math>. What is <math>\sum_{n=2}^{2007} F(n)</math>? | For each integer <math>n>1</math>, let <math>F(n)</math> be the number of solutions to the equation <math>\sin{x}=\sin{(nx)}</math> on the interval <math>[0,\pi]</math>. What is <math>\sum_{n=2}^{2007} F(n)</math>? | ||
− | <math>\mathrm{(A)}\ 2014524 \mathrm{(B)}\ 2015028 \mathrm{(C)}\ 2015033 \mathrm{(D)} | + | <math>\mathrm{(A)}\ 2014524</math> <math>\mathrm{(B)}\ 2015028</math> <math>\mathrm{(C)}\ 2015033</math> <math>\mathrm{(D)}\ 2016532</math> <math>\mathrm{(E)}\ 2017033</math> |
== Solution == | == Solution == |
Revision as of 20:29, 28 September 2007
Problem
For each integer , let be the number of solutions to the equation on the interval . What is ?
Solution
By looking at various graphs, we obtain that
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |