Difference between revisions of "2009 AIME II Problems/Problem 10"

(Solution)
(Solution)
Line 4: Line 4:
 
== Solution ==
 
== Solution ==
  
Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}, so </math>BO<math> = </math>5x<math> and </math>CO<math> = </math>13x<math>, and </math>BO<math> + </math>OC<math> = </math>BC<math> = </math>12<math>, so </math>x<math> = </math>\frac {2}{3}<math>, and </math>OC<math> = </math>\frac {26}{3}<math>. Let </math>P<math> be the altitude from </math>D<math> to </math>OC<math>. It can be seen that triangle </math>DOP<math> is similar to triangle </math>AOB<math>, and triangle </math>DPC<math> is similar to triangle </math>ABC<math>. If </math>DP<math> = </math>15y<math>, then </math>CP<math> = </math>36y<math>, </math>OP<math> = </math>10y<math>, and </math>OD<math> = </math>5y\sqrt {13}<math>. Since </math>OP<math> + </math>CP<math> = </math>46y<math> = </math>\frac {26}{3}<math>, </math>y<math> = </math>\frac {13}{69}<math>, and </math>AD<math> = </math>\frac {60\sqrt{13}}{23}<math>. The answer is </math>60<math> + </math>13<math> + </math>23<math> = </math>\boxed{096}$.
+
Let <math>O</math> be the intersection of <math>BC</math> and <math>AD</math>. By the [[Angle Bisector Theorem]], <math>\frac {5}{BO}</math> = <math>\frac {13}{CO}</math>, so <math>BO</math> = <math>5x</math> and <math>CO</math> = <math>13x</math>, and <math>BO</math> + <math>OC</math> = <math>BC</math> = <math>12</math>, so <math>x</math> = <math>\frac {2}{3}</math>, and <math>OC</math> = <math>\frac {26}{3}</math>. Let <math>P</math> be the altitude from <math>D</math> to <math>OC</math>. It can be seen that triangle <math>DOP</math> is similar to triangle <math>AOB</math>, and triangle <math>DPC</math> is similar to triangle <math>ABC</math>. If <math>DP</math> = <math>15y</math>, then <math>CP</math> = <math>36y</math>, <math>OP</math> = <math>10y</math>, and <math>OD</math> = <math>5y\sqrt {13}</math>. Since <math>OP</math> + <math>CP</math> = <math>46y</math> = <math>\frac {26}{3}</math>, <math>y</math> = <math>\frac {13}{69}</math>, and <math>AD</math> = <math>\frac {60\sqrt{13}}{23}</math>. The answer is <math>60</math> + <math>13</math> + <math>23</math> = <math>\boxed{096}</math>.
  
 
== See Also ==
 
== See Also ==
  
 
{{AIME box|year=2009|n=II|num-b=9|num-a=11}}
 
{{AIME box|year=2009|n=II|num-b=9|num-a=11}}

Revision as of 20:53, 17 April 2009

Four lighthouses are located at points $A$, $B$, $C$, and $D$. The lighthouse at $A$ is $5$ kilometers from the lighthouse at $B$, the lighthouse at $B$ is $12$ kilometers from the lighthouse at $C$, and the lighthouse at $A$ is $13$ kilometers from the lighthouse at $C$. To an observer at $A$, the angle determined by the lights at $B$ and $D$ and the angle determined by the lights at $C$ and $D$ are equal. To an observer at $C$, the angle determined by the lights at $A$ and $B$ and the angle determined by the lights at $D$ and $B$ are equal. The number of kilometers from $A$ to $D$ is given by $\frac {p\sqrt{q}}{r}$, where $p$, $q$, and $r$ are relatively prime positive integers, and $r$ is not divisible by the square of any prime. Find $p$ + $q$ + $r$.


Solution

Let $O$ be the intersection of $BC$ and $AD$. By the Angle Bisector Theorem, $\frac {5}{BO}$ = $\frac {13}{CO}$, so $BO$ = $5x$ and $CO$ = $13x$, and $BO$ + $OC$ = $BC$ = $12$, so $x$ = $\frac {2}{3}$, and $OC$ = $\frac {26}{3}$. Let $P$ be the altitude from $D$ to $OC$. It can be seen that triangle $DOP$ is similar to triangle $AOB$, and triangle $DPC$ is similar to triangle $ABC$. If $DP$ = $15y$, then $CP$ = $36y$, $OP$ = $10y$, and $OD$ = $5y\sqrt {13}$. Since $OP$ + $CP$ = $46y$ = $\frac {26}{3}$, $y$ = $\frac {13}{69}$, and $AD$ = $\frac {60\sqrt{13}}{23}$. The answer is $60$ + $13$ + $23$ = $\boxed{096}$.

See Also

2009 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions