2009 AMC 12A Problems/Problem 19

Revision as of 06:53, 12 February 2009 by Misof (talk | contribs) (New page: == Problem == Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did t...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were $A$ and $B$, respectively. Each polygon had a side length of $2$. Which of the following is true?

$\textbf{(A)}\ A = \frac {25}{49}B\qquad \textbf{(B)}\ A = \frac {5}{7}B\qquad \textbf{(C)}\ A = B\qquad \textbf{(D)}\ A$ $= \frac {7}{5}B\qquad \textbf{(E)}\ A = \frac {49}{25}B$

Solution

In any regular polygon with side length $2$, consider the isosceles triangle formed by the center of the polygon $S$ and two consecutive vertices $X$ and $Y$. We are given that $XY=2$. Obviously $SX=SY=r$, where $r$ is the radius of the circumcircle. Let $T$ be the midpoint of $XY$. Then $XT=TY=1$, and $TS=\rho$, where $\rho$ is the radius of the incircle.

Applying the Pythagorean theorem on the triangle $STX$, we get that $\rho^2 + 1 = r^2$.

Then the area between the circumcircle and the incircle can be computed as $\pi r^2 - \pi \rho^2 = \pi r^2 - \pi (r^2 - 1) = \pi$.

Hence $A=\pi$, $B=\pi$, and therefore $\boxed{A=B}$.

See Also

2009 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions