2011 AMC 12A Problems/Problem 13

Revision as of 04:25, 11 February 2011 by Edisonchew240 (talk | contribs) (Solution)

Problem

Triangle $ABC$ has side-lengths $AB = 12, BC = 24,$ and $AC = 18.$ The line through the incenter of $\triangle ABC$ parallel to $\overline{BC}$ intersects $\overline{AB}$ at $M$ and $\overbar{AC}$ (Error compiling LaTeX. Unknown error_msg) at $N.$ What is the perimeter of $\triangle AMN?$

$\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 30 \qquad \textbf{(C)}\  33 \qquad \textbf{(D)}\ 36 \qquad \textbf{(E)}\ 42$

Solution

Let $O$ be the incenter. $AO$ is the angle bisector of $\angle MAN$. Let the angle bisector of $\angle BAC$ meets $BC$ at $P$ and the angle bisector of $\angle ABC$ meets $AC$ at $Q$. By applying both angle bisector theorem and menelaus' theorem,


$\frac{AO}{OP} \times \frac{BP}{BC} \times \frac{CQ}{QA} = 1$


$\frac{AO}{OP} \times \frac{12}{30} \times \frac{24}{12} = 1$


$\frac{AO}{OP}=\frac{5}{4}$


$\frac{AO}{AP}=\frac{5}{9}$


Perimeter of $\triangle AMN = \frac{12+24+18}{9} \times 5 = 30$

See also

2011 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions