Difference between revisions of "2013 AIME I Problems"
(→Problem 11) 
Anthonyjang (talk  contribs) 

Line 34:  Line 34:  
== Problem 5 ==  == Problem 5 ==  
The real root of the equation <math>8x^33x^23x1=0</math> can be written in the form <math>\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers. Find <math>a+b+c</math>.  The real root of the equation <math>8x^33x^23x1=0</math> can be written in the form <math>\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers. Find <math>a+b+c</math>.  
+  
+  ==Problem 10==  
+  There are nonzero integers <math>a</math>, <math>b</math>, <math>r</math>, and <math>s</math> such that the complex number <math>r+si</math> is a zero of the polynomial <math>P(x)={x}^{3}a{x}^{2}+bx65</math>. For each possible combination of <math>a</math> and <math>b</math>, let <math>{p}_{a,b}</math> be the sum of the zeros of <math>P(x)</math>. Find the sum of the <math>{p}_{a,b}</math>'s for all possible combinations of <math>a</math> and <math>b</math>.  
== Problem 11 ==  == Problem 11 == 
Revision as of 20:07, 16 March 2013
2013 AIME I (Answer Key)  AoPS Contest Collections • PDF  
Instructions
 
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 
Problem 1
The AIME Triathlon consists of a halfmile swim, a 30mile bicycle ride, and an eightmile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a quarter hours. How many minutes does he spend bicycling?
Problem 2
Find the number of fivedigit positive integers, , that satisfy the following conditions:

(a) the number is divisible by

(b) the first and last digits of are equal, and

(c) the sum of the digits of is divisible by
Problem 3
Let be a square, and let and be points on and respectively. The line through parallel to and the line through parallel to divide into two squares and two nonsquare rectangles. The sum of the areas of the two squares is of the area of square Find
Problem 4
In the array of 13 squares shown below, 8 squares are colored red, and the remaining 5 squares are colored blue. If one of all possible such colorings is chosen at random, the probability that the chosen colored array appears the same when rotated 90 degrees around the central square is , where n is a positive integer. Find n.
Problem 5
The real root of the equation can be written in the form , where , , and are positive integers. Find .
Problem 10
There are nonzero integers , , , and such that the complex number is a zero of the polynomial . For each possible combination of and , let be the sum of the zeros of . Find the sum of the 's for all possible combinations of and .
Problem 11
Ms. Math's kindergarten class has 16 registered students. The classroom has a very large number, N, of play blocks which satisfies the conditions:
(a) If 16, 15, or 14 students are present in the class, then in each case all the blocks can be distributed in equal numbers to each student, and
(b) There are three integers such that when , , or students are present and the blocks are distributed in equal numbers to each student, there are exactly three blocks left over.
Find the sum of the distinct prime divisors of the least possible value of N satisfying the above conditions.