During AMC testing, the AoPS Wiki is in read-only mode. No edits can be made.

# Difference between revisions of "2013 AIME I Problems/Problem 7"

## Problem 7

A rectangular box has width $12$ inches, length $16$ inches, and height $\frac{m}{n}$ inches, where $m$ and $n$ are relatively prime positive integers. Three faces of the box meet at a corner of the box. The center points of those three faces are the vertices of a triangle with an area of $30$ square inches. Find $m+n$.

## Solution

After using the pythagorean formula three times, we can quickly see that the sides of the triangle are 10, $\sqrt{(x/2)^2 + 64}$, and $\sqrt{(x/2)^2 + 36}$. Therefore, we can use Heron's formula to set up an equation for the area of the triangle.

The semi perimeter is (10 + $\sqrt{(x/2)^2 + 64}$ + $\sqrt{(x/2)^2 + 36}$)/2

900 = $\frac{1}{2}$((10 + $\sqrt{(x/2)^2 + 64}$ + $\sqrt{(x/2)^2 + 36}$)/2)((10 + $\sqrt{(x/2)^2 + 64}$ + $\sqrt{(x/2)^2 + 36}$)/2 - 10)((10 + $\sqrt{(x/2)^2 + 64}$ + $\sqrt{(x/2)^2 + 36}$)/2 - $\sqrt{(x/2)^2 + 64}$)((10 + $\sqrt{(x/2)^2 + 64}$ + $\sqrt{(x/2)^2 + 36}$)/2 - $\sqrt{(x/2)^2 + 36}$).

Solving, we get $\boxed{041}$.

P.S. No expressions cancel out. Good luck.