Difference between revisions of "2015 AIME II Problems/Problem 4"

m
(Solution 2 (gratuitous wishful thinking))
Line 22: Line 22:
 
-dragoon
 
-dragoon
  
 +
==Solution 3==
 +
Let <math>ABCD</math> be the trapezoid, where <math>\overline{AB} || \overline{CD}</math> and <math>AB = \log 3</math> and <math>CD = \log 192</math>. Draw altitudes from <math>A</math> and <math>B</math> to <math>\overline{CD}</math> with feet at <math>E</math> and <math>F</math>, respectively. <math>AB = \log 3</math>, so <math>EF = \log 3</math>. Now, we attempt to find <math>DE + FC</math>, or what's left of <math>CD</math> after we take out <math>EF</math>. We make use of the two logarithmic rules:
  
 +
<cmath>\log(xy) = \log x + \log y</cmath>
 +
 +
<cmath>\log(x^a) = a\log(x)</cmath>
 +
 +
<cmath>CD = \log 192 = \log (3 \cdot 2^6) = \log 3 + \log(2^6) = \log 3 + 6\log 2</cmath>
 +
 +
Thus, since <math>CD = DE + EF + FC = \log 3 + 6\log 2</math>, <math>CD - EF = \log 3 + 6\log 2 - \log 3 = 6\log 2 = DE + FC</math>.
 +
 +
Now, why was finding <math>DE + FC</math> important? Absolutely no reason! Just kidding, lol 🤣 Now, we essentially "glue" triangles <math>\triangle DAE</math> and <math>\triangle BFC</math> together to get <math>\triangle XC'D'</math>, where <math>X</math> is the point where <math>A</math> and <math>B</math> became one. Note we can do this because <math>\triangle DAE</math> and <math>\triangle BFC</math> are both right triangles with a common leg length (the altitude of trapezoid <math>ABCD</math>).
 +
 +
Triangle <math>XC'D'</math> has a base of <math>C'D'%, which is just equal to </math>DE + FC = 6\log 2<math>. It is equal to </math>DE + FC<math> because when we brought triangles </math>\triangle DAE<math> and </math>\triangle BFC<math> together, the length of </math>CD<math> was not changed except for taking out </math>EF<math>.
 +
 +
</math>XC' = XD'<math> since </math>AD = BC<math> because the problem tells us we have an isosceles trapezoid. Drop and altitude from </math>X<math> to </math>C'D'<math> The altitude has length </math>\log 16 = 4\log 2<math>. The altitude also bisects </math>C'D'<math> since </math>\triangle XC'D'<math> is isosceles. Let the foot of the altitude be </math>M<math>. Then </math>MD' = 3\log 2<math> (Remember that C'D' was </math>6\log 2<math>, and then it got bisected by the altitude). Thus, the hypotenuse, </math>XD'<math> must be </math>5\log 2<math> from the Pythagorean Theorem or by noticing that you have a 3-4-5 right triangle with a similarity ratio of </math>\log 2<math>. Since </math>XD' = XC' = BC = AD<math>, </math>BC = AD = 5\log 2 = \log 2^5<math>.
 +
 +
Now, we have </math>CD = \log (3 \cdot 2^6)<math>, </math>AB = \log 3<math>, and </math>BC = AD = \log 2^5<math>. Thus, their sum is
 +
 +
<cmath> \log (3 \cdot 2^6) + \log 3 + \log 2^5 + \log 2^5 = \log (2^16 \cdot 3^2)</cmath>
 +
 +
Thus, </math>p + q = 16 + 2 = \boxed{18}$. ~Extremelysupercooldude
  
 
==Video Solution==
 
==Video Solution==

Revision as of 14:16, 28 June 2023

Problem

In an isosceles trapezoid, the parallel bases have lengths $\log 3$ and $\log 192$, and the altitude to these bases has length $\log 16$. The perimeter of the trapezoid can be written in the form $\log 2^p 3^q$, where $p$ and $q$ are positive integers. Find $p + q$.

Solution

Call the trapezoid $ABCD$ with $AB$ as the smaller base and $CD$ as the longer. Let the point where an altitude intersects the larger base be $E$, where $E$ is closer to $D$.

Subtract the two bases and divide to find that $ED$ is $\log 8$. The altitude can be expressed as $\frac{4}{3} \log 8$. Therefore, the two legs are $\frac{5}{3} \log 8$, or $\log 32$.

The perimeter is thus $\log 32 + \log 32 + \log 192 + \log 3$ which is $\log 2^{16} 3^2$. So $p + q = \boxed{018}$


Solution 2 (gratuitous wishful thinking)

Set the base of the log as 2. Then call the trapezoid $ABCD$ with $CD$ as the longer base. Then have the two feet of the altitudes be $E$ and $F$, with $E$ and $F$ in position from left to right respectively. Then, $CF$ and $ED$ are $\log 192 - \log 3 = \log 64$ (from the log subtraction identity. Then $CF=EF=3$ (isosceles trapezoid and $\log 64$ being 6. Then the 2 legs of the trapezoid is $\sqrt{3^2+4^2}=5=\log 32$.

And we have the answer:

$\log 192 + \log 32 + \log 32 + \log 3 = \log(192 \cdot 32 \cdot 32 \cdot 3) = \log(2^6 \cdot 3 \cdot 2^5 \cdot 2^5 \cdot 3) = \log(2^{16} \cdot 3^2) \Rightarrow 16+2 = \boxed{18}$

-dragoon

Solution 3

Let $ABCD$ be the trapezoid, where $\overline{AB} || \overline{CD}$ and $AB = \log 3$ and $CD = \log 192$. Draw altitudes from $A$ and $B$ to $\overline{CD}$ with feet at $E$ and $F$, respectively. $AB = \log 3$, so $EF = \log 3$. Now, we attempt to find $DE + FC$, or what's left of $CD$ after we take out $EF$. We make use of the two logarithmic rules:

\[\log(xy) = \log x + \log y\]

\[\log(x^a) = a\log(x)\]

\[CD = \log 192 = \log (3 \cdot 2^6) = \log 3 + \log(2^6) = \log 3 + 6\log 2\]

Thus, since $CD = DE + EF + FC = \log 3 + 6\log 2$, $CD - EF = \log 3 + 6\log 2 - \log 3 = 6\log 2 = DE + FC$.

Now, why was finding $DE + FC$ important? Absolutely no reason! Just kidding, lol 🤣 Now, we essentially "glue" triangles $\triangle DAE$ and $\triangle BFC$ together to get $\triangle XC'D'$, where $X$ is the point where $A$ and $B$ became one. Note we can do this because $\triangle DAE$ and $\triangle BFC$ are both right triangles with a common leg length (the altitude of trapezoid $ABCD$).

Triangle $XC'D'$ has a base of $C'D'%, which is just equal to$ (Error compiling LaTeX. Unknown error_msg)DE + FC = 6\log 2$. It is equal to$DE + FC$because when we brought triangles$\triangle DAE$and$\triangle BFC$together, the length of$CD$was not changed except for taking out$EF$.$XC' = XD'$since$AD = BC$because the problem tells us we have an isosceles trapezoid. Drop and altitude from$X$to$C'D'$The altitude has length$\log 16 = 4\log 2$. The altitude also bisects$C'D'$since$\triangle XC'D'$is isosceles. Let the foot of the altitude be$M$. Then$MD' = 3\log 2$(Remember that C'D' was$6\log 2$, and then it got bisected by the altitude). Thus, the hypotenuse,$XD'$must be$5\log 2$from the Pythagorean Theorem or by noticing that you have a 3-4-5 right triangle with a similarity ratio of$\log 2$. Since$XD' = XC' = BC = AD$,$BC = AD = 5\log 2 = \log 2^5$.

Now, we have$ (Error compiling LaTeX. Unknown error_msg)CD = \log (3 \cdot 2^6)$,$AB = \log 3$, and$BC = AD = \log 2^5$. Thus, their sum is

<cmath> \log (3 \cdot 2^6) + \log 3 + \log 2^5 + \log 2^5 = \log (2^16 \cdot 3^2)</cmath>

Thus,$ (Error compiling LaTeX. Unknown error_msg)p + q = 16 + 2 = \boxed{18}$. ~Extremelysupercooldude

Video Solution

https://www.youtube.com/watch?v=9re2qLzOKWk&t=226s

~MathProblemSolvingSkills.com


See also

2015 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png