Difference between revisions of "2015 AMC 10A Problems/Problem 2"

m
m (Solution)
Line 14: Line 14:
  
 
We have <math>3a + 4b</math> edges total, so <math>3a + 4b = 84</math>.
 
We have <math>3a + 4b</math> edges total, so <math>3a + 4b = 84</math>.
 +
 +
Multiplying the first equation by <math>3</math> on both sides gives <math>3a + 3b = 3(25) = 75</math>.
 +
 +
Second equation minus the first equation gives <math>b = 9</math>.
  
 
Solving gives, <math>a = 16</math> and <math>b = 9</math>, so the answer is <math>\boxed{\textbf{(D) }9}</math>.
 
Solving gives, <math>a = 16</math> and <math>b = 9</math>, so the answer is <math>\boxed{\textbf{(D) }9}</math>.
 
  
 
==Solution 2==
 
==Solution 2==

Revision as of 19:27, 10 March 2020

Problem

A box contains a collection of triangular and square tiles. There are $25$ tiles in the box, containing $84$ edges total. How many square tiles are there in the box?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 11$

Solution

Let $a$ be the amount of triangular tiles and $b$ be the amount of square tiles.

Triangles have $3$ edges and squares have $4$ edges, so we have a system of equations.

We have $a + b$ tiles total, so $a + b = 25$.

We have $3a + 4b$ edges total, so $3a + 4b = 84$.

Multiplying the first equation by $3$ on both sides gives $3a + 3b = 3(25) = 75$.

Second equation minus the first equation gives $b = 9$.

Solving gives, $a = 16$ and $b = 9$, so the answer is $\boxed{\textbf{(D) }9}$.

Solution 2

If all of the tiles were triangles, there would be $75$ edges. This is not enough, so there need to be some squares. Trading a triangle for a square results in one additional edge each time, so we must trade out $9$ triangles for squares. Answer: $\boxed{\textbf{(D) }9}$


See Also

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS