2016 AMC 10B Problems/Problem 11

Revision as of 11:36, 21 February 2016 by Zimbalono (talk | contribs)


Carl decided to in his rectangular garden. He bought $20$ fence posts, placed one on each of the four corners, and spaced out the rest evenly along the edges of the garden, leaving exactly $4$ yards between neighboring posts. The longer side of his garden, including the corners, has twice as many posts as the shorter side, including the corners. What is the area, in square yards, of Carl’s garden?

$\textbf{(A)}\ 256\qquad\textbf{(B)}\ 336\qquad\textbf{(C)}\ 384\qquad\textbf{(D)}\ 448\qquad\textbf{(E)}\ 512$


If the dimensions are $a\times b$, then one side will have $a+1$ posts (including corners) and the other $b+1$.

The total number of posts is $2(a+b)=20$.

[asy]size(7cm);fill((0,0)--(5,0)--(5,7)--(0,7)--cycle,lightgreen); for(int i=0;i<5;++i)dot((i,0),red);for(int i=0;i<7;++i)dot((5,i),blue);dot((5,7)); draw(arc((0,0),.5,-90,-270)--arc((4,0),.5,90,-90)--cycle,gray+dotted); draw(arc((5,0),.5,-180,0)--arc((5,6),.5,0,180)--cycle,gray+dotted); draw((0,-1)--(5,-1),Arrows);draw((6,0)--(6,7),Arrows); label("$a$",(0,-1)--(5,-1),S);label("$b$",(6,0)--(6,7),E); label("$a$",(1,1));label("$b$",(4,5)); [/asy]

Solve the system $\begin{cases}b+1=2(a+1)\\a+b=10\end{cases}$ to get $a=3,\ b=7$. Then the area is $4a\cdot 4b=336$ which is $\mathbf{(B)}$.

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS