Difference between revisions of "2016 AMC 10B Problems/Problem 25"

m (Solution)
m (Solution)
Line 21: Line 21:
 
We can see that for each value of <math>k</math>, <math>\lfloor k \{ x \} \rfloor</math> can equal integers from <math>0</math> to <math>k-1</math>.  
 
We can see that for each value of <math>k</math>, <math>\lfloor k \{ x \} \rfloor</math> can equal integers from <math>0</math> to <math>k-1</math>.  
  
Clearly, the value of <math>\lfloor k \{ x \} \rfloor</math> changes only when x is equal to any of the fractions <math>\frac{1}{k}, \frac{2}{k} \dots \frac{k-1}{k}</math>.
+
Clearly, the value of <math>\lfloor k \{ x \} \rfloor</math> changes only when <math>x</math> is equal to any of the fractions <math>\frac{1}{k}, \frac{2}{k} \dots \frac{k-1}{k}</math>.
 
 
 
So we want to count how many distinct fractions less than <math>1</math> have the form <math>\frac{m}{n}</math> where <math>n \le 10</math>. We can find this easily by computing
 
So we want to count how many distinct fractions less than <math>1</math> have the form <math>\frac{m}{n}</math> where <math>n \le 10</math>. We can find this easily by computing

Revision as of 17:58, 2 September 2019

Problem

Let $f(x)=\sum_{k=2}^{10}(\lfloor kx \rfloor -k \lfloor x \rfloor)$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to $r$. How many distinct values does $f(x)$ assume for $x \ge 0$?

$\textbf{(A)}\ 32\qquad\textbf{(B)}\ 36\qquad\textbf{(C)}\ 45\qquad\textbf{(D)}\ 46\qquad\textbf{(E)}\ \text{infinitely many}$

Solution

Since $x = \lfloor x \rfloor + \{ x \}$, we have

\[f(x) = \sum_{k=2}^{10} (\lfloor k \lfloor x \rfloor +k \{ x \} \rfloor - k \lfloor x \rfloor)\]

The function can then be simplified into

\[f(x) = \sum_{k=2}^{10} ( k \lfloor x \rfloor + \lfloor k \{ x \} \rfloor - k \lfloor x \rfloor)\]

which becomes

\[f(x) = \sum_{k=2}^{10} \lfloor k \{ x \} \rfloor\]

We can see that for each value of $k$, $\lfloor k \{ x \} \rfloor$ can equal integers from $0$ to $k-1$.

Clearly, the value of $\lfloor k \{ x \} \rfloor$ changes only when $x$ is equal to any of the fractions $\frac{1}{k}, \frac{2}{k} \dots \frac{k-1}{k}$.

So we want to count how many distinct fractions less than $1$ have the form $\frac{m}{n}$ where $n \le 10$. We can find this easily by computing

\[\sum_{k=2}^{10} \phi(k)\]

where $\phi(k)$ is the Euler Totient Function. Basically $\phi(k)$ counts the number of fractions with $k$ as its denominator (after simplification). This comes out to be $31$.

Because the value of $f(x)$ is at least 0 and can increase 31 times, there are a total of $\fbox{\textbf{(A)}\ 32}$ different possible values of $f(x)$.

See Also

2016 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS