# Difference between revisions of "2016 AMC 10B Problems/Problem 6"

## Problem

Laura added two three-digit positive integers. All six digits in these numbers are different. Laura's sum is a three-digit number $S$. What is the smallest possible value for the sum of the digits of $S$? $\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 15\qquad\textbf{(E)}\ 20$

## Solution

Let the two three-digit numbers she added be $a$ and $b$ with $a+b=S$ and $a. The hundreds digits of these numbers must be at least $1$ and $2$, so $a\ge 102$ and $b\ge 203$, which means $S\ge 305$, so the digits of $S$ must sum to at least $4$, in which case $S$ would have to be either $310$ or $400$. But $b$ is too big for $310$, so we consider the possibility $S=400$.

Say $a=100+p$ and $b=200+q$; then we just need $p+q=100$ with $p$ and $q$ having different digits which aren't $1$ or $2$.There are many solutions, but $p=3$ and $q=97$ give $103+297=400$ which proves that $\textbf{(B)}\ 4$ is attainable.

## Solution 2

Ok, so for this problem, to find the $3$-digit integer with the smallest sum of digits, one should make the units and tens digit add to $0$. To do that, we need to make sure the digits are all distinct. For the units digit, we can have a variety of digits that work. $7$ works best for the top number which makes the bottom digit $3$. The tens digits need to add to $9$ because of the $1$ that needs to be carried from the addition of the units digits. We see that $5$ and $4$ work the best as we can't use $6$ and $3$. Finally, we use $2$ and $1$ for our hundreds place digits.

Adding the numbers $257$ and $143$ ,

We get $400$ which means our answer is $\textbf{(B)}\ 4$.

## See Also

 2016 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 5 Followed byProblem 7 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. Invalid username
Login to AoPS