Difference between revisions of "2018 AMC 10B Problems/Problem 16"

(Solution 2)
(Solution)
Line 10: Line 10:
 
Therefore the answer is congruent to <math>2018^{2018}\equiv 2^{2018} \pmod{6} = \boxed{ (E)4}</math> Please don't take credit, thanks!
 
Therefore the answer is congruent to <math>2018^{2018}\equiv 2^{2018} \pmod{6} = \boxed{ (E)4}</math> Please don't take credit, thanks!
  
==Solution==
+
==Solution2==
 
(not very good one)
 
(not very good one)
  

Revision as of 21:40, 16 February 2018

Let $a_1,a_2,\dots,a_{2018}$ be a strictly increasing sequence of positive integers such that \[a_1+a_2+\cdots+a_{2018}=2018^{2018}.\] What is the remainder when $a_1^3+a_2^3+\cdots+a_{2018}^3$ is divided by $6$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution 1

$n^{3}\equiv n \pmod{6}$

Therefore the answer is congruent to $2018^{2018}\equiv 2^{2018} \pmod{6} = \boxed{ (E)4}$ Please don't take credit, thanks!

Solution2

(not very good one)

Note that $\left(a_1+a_2+\cdots+a_{2018}\right)^3=a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2\left(a_1+a_2+\cdots+a_{2018}-a_1\right)+3a_2^2\left(a_1+a_2+\cdots+a_{2018}-a_2\right)+\cdots+3a_{2018}^2\left(a_1+a_2+\cdots+a_{2018}-a_{2018}\right)+6\prod_{i\neq j\neq k}^{2018} a_ia_ja_k$

Note that $a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2\left(a_1+a_2+\cdots+a_{2018}-a_1\right)+3a_2^2\left(a_1+a_2+\cdots+a_{2018}-a_2\right)+\cdots+3a_{2018}^2\left(a_1+a_2+\cdots+a_{2018}-a_{2018}\right)+6\prod_{i\neq j\neq k}^{2018} a_ia_ja_k\equiv a_1^3+a_2^3+\cdots+a_{2018}^3+3a_1^2(2018-a_1)+3a_2^2(2018-a_2)+\cdots+3a_{2018}^2(2018-a_{2018}) \equiv -2(a_1^3+a_2^3+\cdots+a_{2018}^3)\pmod 6$ Therefore, $-2(a_1^3+a_2^3+\cdots+a_{2018}^3)\equiv \left(2018^{2018}\right)^3\equiv\left( 2^{2018}\right)^3\equiv 4^3\equiv 4\pmod{6}$.

Thus, $a_1^3+a_2^3+\cdots+a_{2018}^3\equiv 1\pmod 3$. However, since cubing preserves parity, and the sum of the individual terms is even, the some of the cubes is also even, and our answer is $\boxed{\text{(E) }4}$

Solution 2

We first note that $1^3+2^3+...=(1+2+...)^2$. So what we are trying to find is what $(($2018$)^($2018$))^2=(2018)^(4036)$ is mod $6$. We start by noting that $2018$ is congruent to $2$ mod $6$. So we are trying to find $2^4036$ mod $6$. Instead of trying to do this with some number theory skills, we could just look for a pattern. We start small powers of $2$ and see that $2^1$ is $2$ mod $6$, $2^2$ is $4$ mod $6$, $2^3$ is $2$ mod $6$, $2^4$ is $4$ mod $6$, and so on... So we see that since $2^$ (Error compiling LaTeX. ! Missing { inserted.)$(4036)$ has an even power, it must be congruent to $4$ mod $6$, thus giving our answer $\boxed{\text{(E) }4}$. You can prove this pattern using mods. But I thought this was easier.

-TheMagician

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS