# 2018 AMC 8 Problems/Problem 19

## Problem

In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid?

$[asy] unitsize(2cm); path box = (-0.5,-0.2)--(-0.5,0.2)--(0.5,0.2)--(0.5,-0.2)--cycle; draw(box); label("+",(0,0)); draw(shift(1,0)*box); label("-",(1,0)); draw(shift(2,0)*box); label("+",(2,0)); draw(shift(3,0)*box); label("-",(3,0)); draw(shift(0.5,0.4)*box); label("-",(0.5,0.4)); draw(shift(1.5,0.4)*box); label("-",(1.5,0.4)); draw(shift(2.5,0.4)*box); label("-",(2.5,0.4)); draw(shift(1,0.8)*box); label("+",(1,0.8)); draw(shift(2,0.8)*box); label("+",(2,0.8)); draw(shift(1.5,1.2)*box); label("+",(1.5,1.2)); [/asy]$

$\textbf{(A) } 2 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 16$

## Solution 1

You could just make out all of the patterns that make the top positive. In this case, you would have the following patterns:

+−−+, −++−, −−−−, ++++, −+−+, +−+−, ++−−, −−++. There are 8 patterns and so the answer is $\boxed{\textbf{(C) } 8}$

-NinjaBoi2000

## Solution 2

The sign of the next row on the pyramid depends on previous row. There are two options for the previous row, - or +. There are three rows to the pyramid that depend on what the top row is. Therefore, the ways you can make a + on the top is $2^3=8$, so the answer is $\boxed{\textbf{(C) } 8}$

## Solution 3

There is also a pretty simple approach to this problem. Since in the bottom row you can either have 4 of the same signs, 3 of the same signs and one of another, and 2 of the same signs and two of the other, this can be thought of as the 4th Row of the Pascal’s Triangle, which is $1 3 3 1$. Since putting 3 of one sign and 1 of the other in the 4th row doesn’t work, all you need to add is $1 + 3 + 3 + 1 = 8$, so the answer is $\boxed{\textbf{(C) } 8}$.

## Solution 4

Note that there are $2^4 = 16$ possible arrangements of the bottom row, and by symmetry, half of them result in a $+$ sign at the top and half will result in a $-$ sign at the top. Therefore, the answer is $16/2 = \boxed{\textbf{(C) }8}$.