Difference between revisions of "2018 AMC 8 Problems/Problem 22"
(→Solution 1.5) |
Pi is 3.14 (talk | contribs) (→Video Solution) |
||
(30 intermediate revisions by 19 users not shown) | |||
Line 1: | Line 1: | ||
− | ==Problem | + | ==Problem== |
Point <math>E</math> is the midpoint of side <math>\overline{CD}</math> in square <math>ABCD,</math> and <math>\overline{BE}</math> meets diagonal <math>\overline{AC}</math> at <math>F.</math> The area of quadrilateral <math>AFED</math> is <math>45.</math> What is the area of <math>ABCD?</math> | Point <math>E</math> is the midpoint of side <math>\overline{CD}</math> in square <math>ABCD,</math> and <math>\overline{BE}</math> meets diagonal <math>\overline{AC}</math> at <math>F.</math> The area of quadrilateral <math>AFED</math> is <math>45.</math> What is the area of <math>ABCD?</math> | ||
Line 19: | Line 19: | ||
Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>. | Let the area of <math>\triangle CEF</math> be <math>x</math>. Thus, the area of triangle <math>\triangle ACD</math> is <math>45+x</math> and the area of the square is <math>2(45+x) = 90+2x</math>. | ||
− | By | + | By AA similarity, <math>\triangle CEF \sim \triangle ABF</math> with a 1:2 ratio, so the area of triangle <math>\triangle ABF</math> is <math>4x</math>. Now consider trapezoid <math>ABED</math>. Its area is <math>45+4x</math>, which is three-fourths the area of the square. We set up an equation in <math>x</math>: |
<cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath> | <cmath> 45+4x = \frac{3}{4}\left(90+2x\right) </cmath> | ||
Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>. | Solving, we get <math>x = 9</math>. The area of square <math>ABCD</math> is <math>90+2x = 90 + 2 \cdot 9 = \boxed{\textbf{(B)} 108}</math>. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 2== | ==Solution 2== | ||
Line 41: | Line 32: | ||
The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}</math>. | The area of the square is then <math>\frac{45}{\frac{5}{12}}=9\cdot12=\boxed{\textbf{(B)}108}</math>. | ||
+ | ==Solution 3== | ||
+ | Note that triangle <math>ABC</math> has half the area of the square and triangle <math>FEC</math> has <math>\dfrac1{12}</math>th. Thus the area of the quadrilateral is <math>1-1/2-1/12=5/12</math> th the area of the square. The area of the square is then <math>45\cdot\dfrac{12}{5}=\boxed{\textbf{(B.)}108}</math>. | ||
+ | |||
+ | ==Solution 4== | ||
+ | Extend <math>\overline{AD}</math> and <math>\overline{BE}</math> to meet at <math>X</math>. Drop an altitude from <math>F</math> to <math>\overline{CE}</math> and call it <math>h</math>. Also, call <math>\overline{CE}</math> <math>x</math>. As stated before, we have <math>\triangle ABF \sim \triangle CEF</math>, so the ratio of their heights is in a <math>1:2</math> ratio, making the altitude from <math>F</math> to <math>\overline{AB}</math> <math>2h</math>. Note that this means that the side of the square is <math>3h</math>. In addition, <math>\triangle XDE \sim \triangle XAB</math> by AA Similarity in a <math>1:2</math> ratio. This means that the side length of the square is <math>2x</math>, making <math>3h=2x</math>. | ||
+ | |||
+ | Now, note that <math>[ADEF]=[XAB]-[XDE]-[ABF]</math>. We have <math>[\triangle XAB]=(4x)(2x)/2=4x^2,</math> <math>[\triangle XDE]=(x)(2x)/2=x^2,</math> and <math>[\triangle ABF]=(2x)(2h)/2=(2x)(4x/3)/2=4x^2/3.</math> Subtracting makes <math>[ADEF]=4x^2-x^2-4x^2/3=5x^2/3.</math> We are given that <math>[ADEF]=45,</math> so <math>5x^2/3=45 \Rightarrow x^2=27.</math> Therefore, <math>x= 3 \sqrt{3},</math> so our answer is <math>(2x)^2=4x^2=4(27)=\boxed{\textbf{(B) }108}.</math> - moony_eyed | ||
+ | |||
+ | ==Solution 5== | ||
+ | |||
+ | Solution with Cartesian and Barycentric Coordinates: | ||
+ | |||
+ | We start with the following | ||
− | ==See Also | + | Claim: Given a square <math>ABCD</math>, let <math>E</math> be the midpoint of <math>\overline{DC}</math> and let <math>BE\cap AC = F</math>. Then <math>\frac {AF}{FC}=2</math>. |
+ | |||
+ | Proof. We use Cartesian coordinates. Let <math>D</math> be the origin, <math>A=(0,1),C=(0,1),B=(1,1)</math>. We have that <math>\overline{AC}</math> and <math>\overline{EB}</math> are governed by the equations <math>y=-x+1</math> and <math>y=2x-1</math>, respectively. Solving, <math>F=\left(\frac{2}{3},\frac{1}{3}\right)</math>. The result follows. <math>\square</math> | ||
+ | |||
+ | Now we apply Barycentric Coordinates w.r.t. <math>\triangle ACD</math>. We let <math>A=(1,0,0),D=(0,1,0),C=(0,0,1)</math>. Then <math>E=(0,\tfrac 12,\tfrac 12),F=(\tfrac 13,0,\tfrac 23)</math>. | ||
+ | |||
+ | In the barycentric coordinate system, the area formula is <math>[XYZ]= | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/c4_-h7DsZFg - Happytwin | ||
+ | |||
+ | https://youtu.be/veaDx64aX0g | ||
+ | |||
+ | https://youtu.be/FDgcLW4frg8?t=4038 - pi_is_3.14 | ||
+ | |||
+ | =See Also= | ||
{{AMC8 box|year=2018|num-b=21|num-a=23}} | {{AMC8 box|year=2018|num-b=21|num-a=23}} | ||
− | + | Set s to be the bottom left triangle. | |
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 04:58, 28 January 2021
Contents
[hide]Problem
Point is the midpoint of side
in square
and
meets diagonal
at
The area of quadrilateral
is
What is the area of
Solution 1
Let the area of be
. Thus, the area of triangle
is
and the area of the square is
.
By AA similarity, with a 1:2 ratio, so the area of triangle
is
. Now consider trapezoid
. Its area is
, which is three-fourths the area of the square. We set up an equation in
:
Solving, we get
. The area of square
is
.
Solution 2
We can use analytic geometry for this problem.
Let us start by giving the coordinate
,
the coordinate
, and so forth.
and
can be represented by the equations
and
, respectively. Solving for their intersection gives point
coordinates
.
Now, ’s area is simply
or
. This means that pentagon
’s area is
of the entire square, and it follows that quadrilateral
’s area is
of the square.
The area of the square is then .
Solution 3
Note that triangle has half the area of the square and triangle
has
th. Thus the area of the quadrilateral is
th the area of the square. The area of the square is then
.
Solution 4
Extend and
to meet at
. Drop an altitude from
to
and call it
. Also, call
. As stated before, we have
, so the ratio of their heights is in a
ratio, making the altitude from
to
. Note that this means that the side of the square is
. In addition,
by AA Similarity in a
ratio. This means that the side length of the square is
, making
.
Now, note that . We have
and
Subtracting makes
We are given that
so
Therefore,
so our answer is
- moony_eyed
Solution 5
Solution with Cartesian and Barycentric Coordinates:
We start with the following
Claim: Given a square , let
be the midpoint of
and let
. Then
.
Proof. We use Cartesian coordinates. Let be the origin,
. We have that
and
are governed by the equations
and
, respectively. Solving,
. The result follows.
Now we apply Barycentric Coordinates w.r.t. . We let
. Then
.
In the barycentric coordinate system, the area formula is where
is a random triangle and
is the reference triangle. Using this, we find that
Let
so that
. Then we have
so the answer is
.
Video Solution
https://youtu.be/c4_-h7DsZFg - Happytwin
https://youtu.be/FDgcLW4frg8?t=4038 - pi_is_3.14
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
Set s to be the bottom left triangle.
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.