# Difference between revisions of "2018 AMC 8 Problems/Problem 24"

## Problem 24

In the cube $ABCDEFGH$ with opposite vertices $C$ and $E,$ $J$ and $I$ are the midpoints of edges $\overline{FB}$ and $\overline{HD},$ respectively. Let $R$ be the ratio of the area of the cross-section $EJCI$ to the area of one of the faces of the cube. What is $R^2?$ $[asy] size(6cm); pair A,B,C,D,EE,F,G,H,I,J; C = (0,0); B = (-1,1); D = (2,0.5); A = B+D; G = (0,2); F = B+G; H = G+D; EE = G+B+D; I = (D+H)/2; J = (B+F)/2; filldraw(C--I--EE--J--cycle,lightgray,black); draw(C--D--H--EE--F--B--cycle); draw(G--F--G--C--G--H); draw(A--B,dashed); draw(A--EE,dashed); draw(A--D,dashed); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(I); dot(J); label("A",A,E); label("B",B,W); label("C",C,S); label("D",D,E); label("E",EE,N); label("F",F,W); label("G",G,N); label("H",H,E); label("I",I,E); label("J",J,W); [/asy]$ $\textbf{(A) } \frac{5}{4} \qquad \textbf{(B) } \frac{4}{3} \qquad \textbf{(C) } \frac{3}{2} \qquad \textbf{(D) } \frac{25}{16} \qquad \textbf{(E) } \frac{9}{4}$

## Solution

Note that $EJCI$ is a rhombus. Let the side length of the cube be $s$. By the Pythagorean theorem, $EC= \sqrt 3s$ and $JI=\sqrt 2s$. Since the area of a rhombus is half the product of it's diagonals, so the area of the cross section is $\frac{\sqrt 6s^2}{2}$. $R = \frac{\sqrt 6}2$. Thus $R^2 = \boxed{\textbf{(C) } \frac{3}{2}}$

## Note

In the 2008 AMC 10A, Question 21 was nearly identical to this question, it's the same but for this question, you have to look for the square of the area, not the actual area.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 