Difference between revisions of "2019 AIME I Problems/Problem 14"
(→Solution) |
(→Solution) |
||
Line 5: | Line 5: | ||
We know that <math>2019^8 \equiv -1 \pmod{p}</math> for some prime <math>p</math>. We want to find the smallest odd possible value of <math>p</math>. By squaring both sides of the congruence, we find <math>2019^{16} \equiv 1 \pmod{p}</math>. | We know that <math>2019^8 \equiv -1 \pmod{p}</math> for some prime <math>p</math>. We want to find the smallest odd possible value of <math>p</math>. By squaring both sides of the congruence, we find <math>2019^{16} \equiv 1 \pmod{p}</math>. | ||
− | |||
Since <math>2019^{16} \equiv 1 \pmod{p}</math>, the order of <math>2019</math> modulo <math>p</math> is a positive divisor of <math>16</math>. | Since <math>2019^{16} \equiv 1 \pmod{p}</math>, the order of <math>2019</math> modulo <math>p</math> is a positive divisor of <math>16</math>. | ||
− | |||
However, if the order of <math>2019</math> modulo <math>p</math> is <math>1, 2, 4,</math> or <math>8,</math> then <math>2019^8</math> will be equivalent to <math>1 \pmod{p},</math> which contradicts the given requirement that <math>2019^8\equiv -1\pmod{p}</math>. | However, if the order of <math>2019</math> modulo <math>p</math> is <math>1, 2, 4,</math> or <math>8,</math> then <math>2019^8</math> will be equivalent to <math>1 \pmod{p},</math> which contradicts the given requirement that <math>2019^8\equiv -1\pmod{p}</math>. | ||
− | |||
Therefore, the order of <math>2019</math> modulo <math>p</math> is <math>16</math>. Because all orders modulo <math>p</math> divide <math>\phi(p)</math>, we see that <math>\phi(p)</math> is a multiple of <math>16</math>. As <math>p</math> is prime, <math>\phi(p) = p\left(1 - \dfrac{1}{p}\right) = p - 1</math>. Therefore, <math>p\equiv 1 \pmod{16}</math>. The two smallest primes equivalent to <math>1 \pmod{16}</math> are <math>17</math> and <math>97</math>. As <math>2019^8 \not\equiv -1 \pmod{17}</math> and <math>2019^8 \equiv -1 \pmod{97}</math>, the smallest possible <math>p</math> is thus <math>\boxed{097}</math>. | Therefore, the order of <math>2019</math> modulo <math>p</math> is <math>16</math>. Because all orders modulo <math>p</math> divide <math>\phi(p)</math>, we see that <math>\phi(p)</math> is a multiple of <math>16</math>. As <math>p</math> is prime, <math>\phi(p) = p\left(1 - \dfrac{1}{p}\right) = p - 1</math>. Therefore, <math>p\equiv 1 \pmod{16}</math>. The two smallest primes equivalent to <math>1 \pmod{16}</math> are <math>17</math> and <math>97</math>. As <math>2019^8 \not\equiv -1 \pmod{17}</math> and <math>2019^8 \equiv -1 \pmod{97}</math>, the smallest possible <math>p</math> is thus <math>\boxed{097}</math>. |
Revision as of 20:16, 18 May 2020
Problem 14
Find the least odd prime factor of .
Solution
We know that for some prime . We want to find the smallest odd possible value of . By squaring both sides of the congruence, we find .
Since , the order of modulo is a positive divisor of .
However, if the order of modulo is or then will be equivalent to which contradicts the given requirement that .
Therefore, the order of modulo is . Because all orders modulo divide , we see that is a multiple of . As is prime, . Therefore, . The two smallest primes equivalent to are and . As and , the smallest possible is thus .
Note to solution
is the Euler Totient Function of integer . Euler's Totient Theorem: define as the number of positive integers less than but relatively prime to . We have where are the prime factors of . Then, we have if .
Furthermore, the order modulo for an integer relatively prime to is defined as the smallest positive integer such that . An important property of the order is that .
Video Solution
On The Spot STEM:
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.