# Difference between revisions of "2019 AIME I Problems/Problem 15"

## Problem 15

Let $\overline{AB}$ be a chord of a circle $\omega$, and let $P$ be a point on the chord $\overline{AB}$. Circle $\omega_1$ passes through $A$ and $P$ and is internally tangent to $\omega$. Circle $\omega_2$ passes through $B$ and $P$ and is internally tangent to $\omega$. Circles $\omega_1$ and $\omega_2$ intersect at points $P$ and $Q$. Line $PQ$ intersects $\omega$ at $X$ and $Y$. Assume that $AP=5$, $PB=3$, $XY=11$, and $PQ^2 = \tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

## Solution 1

[asy] size(8cm); pair O, A, B, P, O1, O2, Q, X, Y; O=(0, 0); A=dir(140); B=dir(40); P=(3A+5B)/8; O1=extension((A+P)/2, (A+P)/2+(0, 1), A, O); O2=extension((B+P)/2, (B+P)/2+(0, 1), B, O); Q=intersectionpoints(circle(O1, length(A-O1)), circle(O2, length(B-O2)))[1]; X=intersectionpoint(P -- (P+(P-Q)*100), circle(O, 1)); Y=intersectionpoint(Q -- (Q+(Q-P)*100), circle(O, 1));

draw(circle(O, 1)); draw(circle(O1, length(A-O1))); draw(circle(O2, length(B-O2))); draw(A -- B); draw(X -- Y); draw(A -- O -- B); draw(O1 -- P -- O2);

dot("$O$", O, S); dot("$A$", A, A); dot("$B$", B, B); dot("$P$", P, dir(70)); dot("$Q$", Q, dir(200)); dot("$O_1$", O1, SW); dot("$O_2$", O2, SE); dot("$X$", X, X); dot("$Y$", Y, Y); [/asy] Let $O_1$ and $O_2$ be the centers of $\omega_1$ and $\omega_2$, respectively. There is a homothety at $A$ sending $\omega$ to $\omega_1$ that sends $B$ to $P$ and $O$ to $O_1$, so $\overline{OO_2}\parallel\overline{O_1P}$. Similarly, $\overline{OO_1}\parallel\overline{O_2P}$, so $OO_1PO_2$ is a parallelogram. Moreover, $$\angle O_1QO_2=\angle O_1PO_2=\angle O_1OO_2,$$whence $OO_1O_2Q$ is cyclic. However, $$OO_1=O_2P=O_2Q,$$so $OO_1O_2Q$ is an isosceles trapezoid. Since $\overline{O_1O_2}\perp\overline{XY}$, $\overline{OQ}\perp\overline{XY}$, so $Q$ is the midpoint of $\overline{XY}$.

By Power of a Point, $PX\cdot PY=PA\cdot PB=15$. Since $PX+PY=XY=11$, $$XP=\frac{11-\sqrt{61}}2\implies PQ=\frac{\sqrt{61}}2\implies PQ^2=\frac{61}4,$$and the requested sum is $61+4=\boxed{065}$.

(Solution by TheUltimate123)

## Solution 2

Firstly we need to notice that $Q$ is the middle point of $XY$. Assume the center of circle $w, w_1, w_2$ are $O, O_1, O_2$, respectively. Then $A, O_2, O$ are collinear and $O, O_1, B$ are collinear. Link $O_1P, O_2P, O_1Q, O_2Q$. Notice that, $\angle B=\angle A=\angle APO_2=\angle BPO_1$. As a result, $PO_1\parallel O_2O$ and $QO_1\parallel O_2P$. So we have parallelogram $PO_2O_1O$. So $\angle O_2PO_1=\angle O$ Notice that, $O_1O_2\bot PQ$ and $O_1O_2$ divide $PQ$ into two equal length pieces, So we have $\angle O_2PO_1=\angle O_2QO_1=\angle O$. As a result, $O_2, Q, O, O_1,$ lie on one circle. So $\angle OQO_1=\angle OO_2O_1=\angle O_2O_1P$. Notice that $\angle O_1PQ+\angle O_2O_1P=90^{\circ}$, we have $\angle OQP=90^{\circ}$. As a result, $OQ\bot PQ$. So $Q$ is the middle point of $XY$.

Back to our problem. Assume $XP=x$, $PY=y$ and $x. Then we have $AP\cdot PB=XP\cdot PY$, that is, $xy=15$. Also, $XP+PY=x+y=XY=11$. Solve these above, we have $x=\frac{11-\sqrt{61}}{2}=XP$. As a result, we hav e $PQ=XQ-XP=\frac{11}{2}-\frac{11-\sqrt{61}}{2}=\frac{\sqrt{61}}{2}$. So, we have $PQ^2=\frac{61}{4}$. As a result, our answer is $m+n=61+4=\boxed{065}$.