Difference between revisions of "2019 AIME I Problems/Problem 2"
(→Problem 2) |
(→Problem 2) |
||
Line 2: | Line 2: | ||
==Problem 2== | ==Problem 2== | ||
− | + | Jenn randomly chooses a number <math>J</math> from <math>1, 2, 3,\ldots, 19, 20</math>. Bela then randomly chooses a number <math>B</math> from <math>1, 2, 3,\ldots, 19, 20</math> distinct from <math>J</math>. The value of <math>B - J</math> is at least <math>2</math> with a probability that can be expressed in the form <math>\frac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | |
==Solution== | ==Solution== |
Revision as of 20:28, 14 March 2019
The 2019 AIME I takes place on March 14, 2019.
Problem 2
Jenn randomly chooses a number from . Bela then randomly chooses a number from distinct from . The value of is at least with a probability that can be expressed in the form where and are relatively prime positive integers. Find .
Solution
Wait next year for it...
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.