Difference between revisions of "2019 AIME I Problems/Problem 6"
(I offered a very simple solution.) |
|||
Line 2: | Line 2: | ||
In convex quadrilateral <math>KLMN</math> side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>. | In convex quadrilateral <math>KLMN</math> side <math>\overline{MN}</math> is perpendicular to diagonal <math>\overline{KM}</math>, side <math>\overline{KL}</math> is perpendicular to diagonal <math>\overline{LN}</math>, <math>MN = 65</math>, and <math>KL = 28</math>. The line through <math>L</math> perpendicular to side <math>\overline{KN}</math> intersects diagonal <math>\overline{KM}</math> at <math>O</math> with <math>KO = 8</math>. Find <math>MO</math>. | ||
− | ==Solution 1 (Trig)== | + | |
+ | ==Solution 1 (Simplicity) == | ||
+ | Note that <math>KLMN</math> is cyclic with diameter <math>KN</math> since <math>\angle KLN = \angle KMN = \frac{\pi}{2}</math>. Also, note that we have <math>\triangle KML \sim \triangle KLO</math> by SS similarity. | ||
+ | |||
+ | We see this by <math>\angle LKM = \angle OKL</math> and <math>\angle KLO = \angle KML</math>. | ||
+ | The latter equality can be seen if we extend <math>LP</math> to point <math>L'</math> on <math>(KLMN)</math>. We know <math>LK = KL'</math> from which it follows <math>\angle KLO = \angle KML</math>. | ||
+ | |||
+ | Let <math>MO = x</math>. By <math>\triangle KML \sim \triangle KLO</math> we have | ||
+ | |||
+ | <cmath>\frac{KL}{KO} = \frac{KM}{KL} \Rightarrow \frac{28}{8} = \frac{x+8}{28}.</cmath> | ||
+ | |||
+ | <cmath>98 = x + 8 \Rightarrow x = \boxed{090}.</cmath> | ||
+ | |||
+ | - gregwwl | ||
+ | |||
+ | ==Solution 2 (Trig)== | ||
Let <math>\angle MKN=\alpha</math> and <math>\angle LNK=\beta</math>. Note <math>\angle KLP=\beta</math>. | Let <math>\angle MKN=\alpha</math> and <math>\angle LNK=\beta</math>. Note <math>\angle KLP=\beta</math>. | ||
Line 13: | Line 28: | ||
Thus, <math>MK=\frac{MN}{\tan\alpha}=98</math>, so <math>MO=MK-KO=\boxed{090}</math>. | Thus, <math>MK=\frac{MN}{\tan\alpha}=98</math>, so <math>MO=MK-KO=\boxed{090}</math>. | ||
− | ==Solution | + | ==Solution 3 (Similar triangles)== |
<asy> | <asy> | ||
size(250); | size(250); | ||
Line 53: | Line 68: | ||
Solution by vedadehhc | Solution by vedadehhc | ||
− | ==Solution | + | ==Solution 4 (Similar triangles, orthocenters)== |
Extend <math>KL</math> and <math>NM</math> past <math>L</math> and <math>M</math> respectively to meet at <math>P</math>. Let <math>H</math> be the intersection of diagonals <math>KM</math> and <math>LN</math> (this is the orthocenter of <math>\triangle KNP</math>). | Extend <math>KL</math> and <math>NM</math> past <math>L</math> and <math>M</math> respectively to meet at <math>P</math>. Let <math>H</math> be the intersection of diagonals <math>KM</math> and <math>LN</math> (this is the orthocenter of <math>\triangle KNP</math>). | ||
Line 64: | Line 79: | ||
Cross-multiplying and dividing by <math>4+4k</math> gives <math>2(8+8k+HM) = 28 \cdot 7 = 196</math> so <math>MO = 8k + HM = \frac{196}{2} - 8 = \boxed{090}</math>. (Solution by scrabbler94) | Cross-multiplying and dividing by <math>4+4k</math> gives <math>2(8+8k+HM) = 28 \cdot 7 = 196</math> so <math>MO = 8k + HM = \frac{196}{2} - 8 = \boxed{090}</math>. (Solution by scrabbler94) | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 5 (5-second PoP)== | ==Solution 5 (5-second PoP)== |
Revision as of 20:12, 15 March 2019
Contents
Problem 6
In convex quadrilateral side is perpendicular to diagonal , side is perpendicular to diagonal , , and . The line through perpendicular to side intersects diagonal at with . Find .
Solution 1 (Simplicity)
Note that is cyclic with diameter since . Also, note that we have by SS similarity.
We see this by and . The latter equality can be seen if we extend to point on . We know from which it follows .
Let . By we have
- gregwwl
Solution 2 (Trig)
Let and . Note .
Then, . Furthermore, .
Dividing the equations gives
Thus, , so .
Solution 3 (Similar triangles)
First, let be the intersection of and as shown above. Note that as given in the problem. Since and , by AA similarity. Similarly, . Using these similarities we see that and Combining the two equations, we get Since , we get .
Solution by vedadehhc
Solution 4 (Similar triangles, orthocenters)
Extend and past and respectively to meet at . Let be the intersection of diagonals and (this is the orthocenter of ).
As (as , using the fact that is the orthocenter), we may let and .
Then using similarity with triangles and we have
Cross-multiplying and dividing by gives so . (Solution by scrabbler94)
Solution 5 (5-second PoP)
Notice that is inscribed in the circle with diameter and is inscribed in the circle with diameter . Furthermore, is tangent to . Then, and .
(Solution by TheUltimate123)
Video Solution
Video Solution: https://www.youtube.com/watch?v=0AXF-5SsLc8
See Also
2019 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.