2021 Fall AMC 12A Problems/Problem 10

Revision as of 07:27, 26 November 2021 by Wilhelmz (talk | contribs) (Solution 2 (9's Identity))
The following problem is from both the 2021 Fall AMC 10A #12 and 2021 Fall AMC 12A #10, so both problems redirect to this page.

Problem

The base-nine representation of the number $N$ is $27{,}006{,}000{,}052_{\text{nine}}.$ What is the remainder when $N$ is divided by $5?$

$\textbf{(A) } 0\qquad\textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) }4$

Solution 1

Recall that $9\equiv-1\pmod{5}.$ We expand $N$ by the definition of bases: \begin{align*} N&=27{,}006{,}000{,}052_9 \\ &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\ &\equiv 2\cdot(-1)^{10} + 7\cdot(-1)^9 + 6\cdot(-1)^6 + 5\cdot(-1) + 2 &&\pmod{5} \\ &= 2-7+6-5+2 \\ &= -2 \\ &\equiv \boxed{\textbf{(D) } 3} &&\pmod{5}. \end{align*} ~Aidensharp ~kante314 ~MRENTHUSIASM

Solution 2 (9's Identity)

We need to first convert N into a regular base-10 integer:

\begin{align*} N&=27{,}006{,}000{,}052_9 \\ &= 2\cdot9^{10} + 7\cdot9^9 + 6\cdot9^6 + 5\cdot9 + 2 \\ \end{align*}

Now, consider how the last digit of $9$ changes with changes of the power of $9$:

\begin{align*} 9^0=1 \\ 9^1=9 \\ 9^2=81 \\ 9^3=729 \\ 9^4=6561 \\ ...... \end{align*}

Note that if $x$ is odd:

\begin{align*} 9^x &\equiv 4\pmod{5} \\ \end{align*}

If $x$ is even:

\begin{align*} 9^x &\equiv 1\pmod{5} \\ \end{align*}

Therefore, we have:

\begin{align*} N&\equiv 2\cdot(1) + 7\cdot(4) + 6\cdot(1) + 5\cdot(4) + 2\cdot(1) &\pmod{5} \\ &\equiv 2+28+6+20+2 &\pmod{5} \\ &\equiv 58 &\pmod{5} \\ &\equiv \boxed{\textbf{(D) } 3} &\pmod{5} \\ \end{align*}

~Wilhelm Z

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png