Difference between revisions of "2023 AIME I Problems/Problem 2"

(Solution 2 (extremely similar to above))
(Problem)
(20 intermediate revisions by 11 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Positive real numbers <math>b \not= 1</math> and <math>n</math> satisfy the equations <cmath>\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).</cmath> The value of <math>n</math> is <math>\frac{j}{k},</math> where <math>j</math> and <math>k</math> are relatively prime positive integers. Find <math>j+k.</math>
 
Positive real numbers <math>b \not= 1</math> and <math>n</math> satisfy the equations <cmath>\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).</cmath> The value of <math>n</math> is <math>\frac{j}{k},</math> where <math>j</math> and <math>k</math> are relatively prime positive integers. Find <math>j+k.</math>
 +
==Video Solution & More by MegaMath==
 +
https://www.youtube.com/watch?v=jxY7BBe-4gU
  
==Solution 1==
+
==Solution==
 
Denote <math>x = \log_b n</math>.
 
Denote <math>x = \log_b n</math>.
 
Hence, the system of equations given in the problem can be rewritten as
 
Hence, the system of equations given in the problem can be rewritten as
Line 11: Line 13:
 
\end{align*}
 
\end{align*}
 
</cmath>
 
</cmath>
Thus, <math>x = 4</math> and <math>b = \frac{5}{4}</math>.
+
Solving the system gives <math>x = 4</math> and <math>b = \frac{5}{4}</math>.
 
Therefore,
 
Therefore,
 
<cmath>n = b^x = \frac{625}{256}.</cmath>
 
<cmath>n = b^x = \frac{625}{256}.</cmath>
Line 18: Line 20:
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
  
==Solution 2 (extremely similar to above)==
+
==Video Solution by TheBeautyofMath==
First, take the first equation and convert <math>\log_b\sqrt{n}</math> to <math>\log_b n^{\dfrac12}=\dfrac12\log_b n</math>. Square both sides to get <math>log_b n=1/4 (log_b n)^2</math>. Because a logarithm cannot be equal to <math>0</math>, <math>log_b n=4</math>.
+
https://youtu.be/U96XHH23zhA
  
By another logarithm rule, <math>log_b(bn)=log_b b+log_b n=1+4=5</math>. Therefore, <math>4b=5</math>, and <math>b=\dfrac54</math>. Since <math>b^4=n</math>, we have <math>n=\dfrac{625}{256}</math>, and <math>a+b=\boxed{881}</math>.
+
~IceMatrix
 
 
~wuwang2002 (feel free to remove if this is too similar to the above)
 
  
 
==See also==
 
==See also==
 
{{AIME box|year=2023|num-b=1|num-a=3|n=I}}
 
{{AIME box|year=2023|num-b=1|num-a=3|n=I}}
 
{{MAA Notice}}
 
{{MAA Notice}}
 +
[[Category:Intermediate Algebra Problems]]

Revision as of 13:54, 9 February 2024

Problem

Positive real numbers $b \not= 1$ and $n$ satisfy the equations \[\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).\] The value of $n$ is $\frac{j}{k},$ where $j$ and $k$ are relatively prime positive integers. Find $j+k.$

Video Solution & More by MegaMath

https://www.youtube.com/watch?v=jxY7BBe-4gU

Solution

Denote $x = \log_b n$. Hence, the system of equations given in the problem can be rewritten as \begin{align*} \sqrt{x} & = \frac{1}{2} x , \\ bx & = 1 + x . \end{align*} Solving the system gives $x = 4$ and $b = \frac{5}{4}$. Therefore, \[n = b^x = \frac{625}{256}.\] Therefore, the answer is $625 + 256 = \boxed{881}$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution by TheBeautyofMath

https://youtu.be/U96XHH23zhA

~IceMatrix

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png