Inequality

by giangtruong13, Apr 21, 2025, 8:01 AM

Let $a,b,c >0$ such that: $a^2+b^2+c^2=3$. Prove that: $$\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}+abc \geq 4$$

Inspired by old results

by sqing, Apr 21, 2025, 5:02 AM

Orthoincentre mixup in rmo mock

by Project_Donkey_into_M4, Apr 20, 2025, 6:26 PM

Let $\Delta ABC$ be a triangle with circumcircle $\omega$, $P_A, P_B, P_C$ be the foot of altitudes from $A, B, C$ onto the opposite sides respectively and $H$ the orthocentre. Reflect $H$ across the line $BC$ to obtain $Q$. Suppose there exists points $I,J \in \omega$ such that $P_A$ is the incentre of $\Delta QIJ$. If $M$ and $N$ be the midpoints of $\overline{P_AP_B}$ and $\overline{P_AP_C}$ respectively, then show that $I,J,M,N$ are collinear.

Test from Côte d'Ivoire Diophantine equation

by MENELAUSS, Apr 19, 2025, 3:05 PM

determine all triplets $(x;y;z)$ of natural numbers such that
$$y  \quad  \text{is prime }$$
$$y \quad \text{and} \quad 3  \quad \text{does not divide} \quad z$$
$$x^3-y^3=z^2$$

too many equality cases

by Scilyse, Jul 17, 2024, 12:12 PM

Let $N$ be a positive integer, and consider an $N \times N$ grid. A right-down path is a sequence of grid cells such that each cell is either one cell to the right of or one cell below the previous cell in the sequence. A right-up path is a sequence of grid cells such that each cell is either one cell to the right of or one cell above the previous cell in the sequence.

Prove that the cells of the $N \times N$ grid cannot be partitioned into less than $N$ right-down or right-up paths. For example, the following partition of the $5 \times 5$ grid uses $5$ paths.
[asy]
size(4cm);
draw((5,-1)--(0,-1)--(0,-2)--(5,-2)--(5,-3)--(0,-3)--(0,-4)--(5,-4),gray+linewidth(0.5)+miterjoin);
draw((1,-5)--(1,0)--(2,0)--(2,-5)--(3,-5)--(3,0)--(4,0)--(4,-5),gray+linewidth(0.5)+miterjoin);
draw((0,0)--(5,0)--(5,-5)--(0,-5)--cycle,black+linewidth(2.5)+miterjoin);
draw((0,-1)--(3,-1)--(3,-2)--(1,-2)--(1,-4)--(4,-4)--(4,-3)--(2,-3)--(2,-2),black+linewidth(2.5)+miterjoin);
draw((3,0)--(3,-1),black+linewidth(2.5)+miterjoin);
draw((1,-4)--(1,-5),black+linewidth(2.5)+miterjoin);
draw((4,-3)--(4,-1)--(5,-1),black+linewidth(2.5)+miterjoin);
[/asy]
Proposed by Zixiang Zhou, Canada
This post has been edited 8 times. Last edited by Scilyse, Jan 23, 2025, 12:41 PM
Reason: add "proposed by"

The special Miquel's point from a familiar problem

by danil_e, Jul 23, 2023, 2:52 PM

Problem. Let $ABC$ be an acute-angled triangle with $AC > AB$, let $O$ be its circumcentre. The line through $A$ perpendicular to $BC$ intersects circle $(O)$ again at $T$. The tangents at $B$ and $C$ of $(O)$ intersect at $S$. $AS$ intersects $(O)$ at $X \neq A$. $OB$ intersects $AT$ at $P$. Let $N$ be the midpoint of $TC$.
Prove that $T, P, N, X$ are concyclic.
Attachments:
configure.pdf (64kb)

FE over \mathbb{R}

by megarnie, Nov 13, 2021, 5:29 PM

Find all functions from the reals to the reals so that \[f(xy)+f(xf(x^2y))=f(x^2)+f(y^2)+f(f(xy^2))+x \]holds for all $x,y\in\mathbb{R}$.
This post has been edited 1 time. Last edited by megarnie, Nov 13, 2021, 5:29 PM

\frac{a}{(b-c)^2}+\frac{b}{(a-c)^2}+\frac{c}{(b-a)^2}

by Jjesus, Oct 12, 2020, 2:40 PM

Let $p, q$ be real numbers. Knowing that there are positive real numbers $a, b, c$, different two by two, such that
$$p=\frac{a^2}{(b-c)^2}+\frac{b^2}{(a-c)^2}+\frac{c^2}{(a-b)^2},$$$$q=\frac{1}{(b-c)^2}+\frac{1}{(a-c)^2}+\frac{1}{(b-a)^2}$$calculate the value of
$$\frac{a}{(b-c)^2}+\frac{b}{(a-c)^2}+\frac{c}{(b-a)^2}$$in terms of $p, q$.
This post has been edited 1 time. Last edited by Jjesus, Oct 23, 2020, 9:23 PM

Advanced topics in Inequalities

by va2010, Mar 7, 2015, 4:43 AM

So a while ago, I compiled some tricks on inequalities. You are welcome to post solutions below!
Attachments:
advanced-topics-inequalities (8).pdf (139kb)

16th ibmo - uruguay 2001/q3.

by carlosbr, Apr 15, 2006, 12:52 AM

Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements.

Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$

The oldest, shortest words — "yes" and "no" — are those which require the most thought.

avatar

adityaguharoy
Archives
+ February 2021
+ April 2016
Shouts
Submit
  • hi guys $~~~$

    by Yiyj1, Apr 9, 2025, 7:25 AM

  • You will be remembered

    by giangtruong13, Feb 26, 2025, 3:38 PM

  • 2025 shout!

    by just_a_math_girl, Jan 12, 2025, 7:25 AM

  • 2024 shout

    by bachkieu, Aug 22, 2024, 12:52 AM

  • helooooooooooo

    by owenccc, Sep 27, 2023, 12:59 AM

  • hullo :<

    by gracemoon124, Jul 14, 2023, 2:33 AM

  • hello $ $

    by LeoLionTank, Feb 17, 2023, 9:02 PM

  • Halo thear

    by HoRI_DA_GRe8, Oct 18, 2022, 7:44 AM

  • hi!!
    just found this and I can't wait to read more!
    so happy to have found this blog!

    by Morrigan_Black, Jan 28, 2022, 1:05 PM

  • still waiting for the mathlinks camp lol

    by CinarArslan, Jan 9, 2022, 1:55 PM

  • hello :D

    by CyclicISLscelesTrapezoid, Nov 29, 2021, 6:36 PM

  • Right below the shout box it says how many it has.

    by pith0n, May 11, 2021, 5:08 AM

  • Oh really the blog has 100 posts! I never counted the number of posts here. If I get some free time I will create a new page on my wordpress website and there I will post all the contents of this blog. So, make sure that you check the wordpress site.

    by adityaguharoy, Mar 21, 2021, 2:58 PM

  • Nice blog!

    by DCode10, Mar 10, 2021, 7:00 PM

  • Hi adityaguharoy! Nice blog!

    by masadca, Feb 4, 2021, 9:19 PM

118 shouts
Tags
number theory
algebra
calculus
Inequality
function
real analysis
Real Analysis 1
real numbers
combinatorics
continuity
geometry
polynomial
Wikipedia
inequalities
linear algebra
prime numbers
rational numbers
Sequence
Vectors and Matrices
Convergence
functional equation
gallery
identity
Irrational numbers
Lemma
mathematics
Matrices
algorithm
Calculus 1
countable sets
definition
differentiability
easy
equation
Example
images
Integral
interesting
Links
probability
set theory
trigonometry
uncountable sets
Vectors
analysis
bijection
bijective function
complex numbers
continuous function
convergence and divergence
counting
differentiation
Diophantine equation
Fibonacci sequence
fishes
Fractals
GCD
Geometric Inequalities
graph theory
Greatest Integer Function
interesting number
inverse of matrices
logic
lonesan
modulo
non-existence
numbers
pi
Pictures
puzzles
pythagoras
Recreation
Sequence and Series
sequence definition
series
Solution
solve
Theorem
triangle inequality
tribute
12-21
1968
2018
22dividedby7
259 X 39
acute angled triangle
announcement
AoPS
Apery s constant
article
Attachment
barnstar
Bertrand s postulate
Bolzano Weirestrass
BOTTEMA
bounds
bq
Candido s identity
Category I
Cauchy condensation
Celebration
chess
chess-puzzles
collection
combinatorial-number theory
Community
complement graph
complex-geometry
computer
Computer Programming
computer-programming
concave functions
Congruency
connected graph
construction
content of a polynomial
continuous
Convex Functions
convex-concave
Coronavirus
Cos
cosine rule
Covid-19
cube-root of 1
definitions
degree 2
Determinants
differentiable
Digits
Diophantus identity
divergence
Euclidean algorithm
euclidean geometry
Euler s number
ex falso quodlibet
factorization
false
Fiber
Floor
foundational mathematics
FRS degree 2
FRT
Function Construction
functions
Gauss Jordan Elimination
google
graph
greatest common divisor
greetings
Happy New Year
Hermite s identity
history
HMMT
infinity
Integers
integrable
integral-calculus
integration
irrational
isomorphic graphs
isomorphism in graph
kobayashi
Koch curve
Koch snowflake
Korselt
Korselt criterion
limit
link
Locally finite set
magma
Maple
mathematical theory
mathematicians
matrix
Measure theory
Memory
merry christmas
method
modular arithmetic
modulo 6
motto
notation
number
number of outcomes
Number of Real Number solution
number puzzles
Order
ordered pair
pascal s triangle
pattern
PDF
pigeonhole principle
polynomial approximation
positive real numbers
precautions
predicate claculus
predicate logic
prime
Prime number
project Euler
propositional calculus
propositional logic
Putnam
pythagorean tree
Quadratic
Ramsey
Ramsey Theory
rational
Real number equations
reverse under square
riemann integral
Safety
search
self complementary graphs
Sets
Sierpenski
Sierpinski Triangle
Sierpnski
sin
slogan
snowflake
software
song
squaring
Stone-Weirestrass
stronger PhP
Tan
tends
terminology
Tradition
Triangle
trigonometric inequalities
truth
twelvefold way
unity
VJIMC
Volterra s function
Weirestrass
willy s lemma
xzlbq
zeckendorf theorem
Zsigmondy
About Owner
  • Posts: 4655
  • Joined: Apr 29, 2014
Blog Stats
  • Blog created: Apr 26, 2016
  • Total entries: 101
  • Total visits: 26099
  • Total comments: 61
Search Blog
a