100th post

by MathJedi108, Apr 20, 2025, 10:59 PM

Well I guess this is my 100th post, it would be really funny if it isn't can yall share your favorite experience on AoPS here?

Median geometry

by Sedro, Apr 20, 2025, 6:03 PM

In triangle $ABC$, points $D$, $E$, and $F$ are the midpoints of sides $BC$, $CA$, and $AB$, respectively. Prove that the area of the triangle with side lengths $AD$, $BE$, and $CF$ has area $\tfrac{3}{4}[ABC]$.

geometry

by carvaan, Apr 20, 2025, 5:46 PM

The difference between two angles of a triangle is 24°. All angles are numerically double digits. Find the number of possible values of the third angle.

Complex Numbers Question

by franklin2013, Apr 20, 2025, 4:08 PM

Hello everyone! This is one of my favorite complex numbers questions. Have fun!

$f(z)=z^{720}-z^{120}$. How many complex numbers $z$ are there such that $|z|=1$ and $f(z)$ is an integer.

Hint

VOLUNTEERING OPPORTUNITIES OPEN TO HIGH/MIDDLE SCHOOLERS

by im_space_cadet, Apr 20, 2025, 2:27 PM

Hi everyone!
Do you specialize in contest math? Do you have a passion for teaching? Do you want to help leverage those college apps? Well, I have something for all of you.

I am im_space_cadet, and during the fall of last year, I opened my non-profit DeltaMathPrep which teaches students preparing for contest math the problem-solving skills they need in order to succeed at these competitions. Currently, we are very much understaffed and would greatly appreciate the help of more tutors on our platform.

Each week on Saturday and Wednesday, we meet once for each competition: Wednesday for AMC 8 and Saturday for AMC 10 and we go over a past year paper for the entire class. On both of these days, we meet at 9PM EST in the night.

This is a great opportunity for anyone who is looking to have a solid activity to add to their college resumes that requires low effort from tutors and is very flexible with regards to time.

This is the link to our non-profit for anyone who would like to view our initiative:
https://www.deltamathprep.org/

If you are interested in this opportunity, please send me a DM on AoPS or respond to this post expressing your interest. I look forward to having you all on the team!

Thanks,
im_space_cadet

Three variables inequality

by Headhunter, Apr 20, 2025, 6:58 AM

$\forall a\in R$ ,$~\forall b\in R$ ,$~\forall c \in R$
Prove that at least one of $(a-b)^{2}$, $(b-c)^{2}$, $(c-a)^{2}$ is not greater than $\frac{a^{2}+b^{2}+c^{2}}{2}$.

I assume that all are greater than it, but can't go more.

weird permutation problem

by Sedro, Apr 20, 2025, 2:09 AM

Let $\sigma$ be a permutation of $1,2,3,4,5,6,7$ such that there are exactly $7$ ordered pairs of integers $(a,b)$ satisfying $1\le a < b \le 7$ and $\sigma(a) < \sigma(b)$. How many possible $\sigma$ exist?
L

Find all triples

by pedronis, Apr 19, 2025, 12:14 AM

Find all triples of positive integers $(n, r, s)$ such that $n^2 + n + 1$ divides $n^r + n^s + 1$.
This post has been edited 2 times. Last edited by pedronis, Apr 19, 2025, 12:16 AM

Inequalities

by sqing, Apr 16, 2025, 4:52 AM

Let $   a,b    $ be reals such that $  a^2+ab+b^2 =3$ . Prove that
$$ \frac{4}{ 3}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{11}{4 }$$$$ \frac{13}{ 4}\geq \frac{1}{ a^2+5 }+ \frac{1}{ b^2+5 }+ab \geq -\frac{2}{3 }$$$$ \frac{3}{ 2}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq -\frac{17}{6 }$$$$ \frac{19}{ 6}\geq  \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2}$$Let $   a,b    $ be reals such that $  a^2-ab+b^2 =1 $ . Prove that
$$ \frac{3}{ 2}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }+ab \geq \frac{4}{15 }$$$$ \frac{14}{ 15}\geq \frac{1}{ a^2+3 }+ \frac{1}{ b^2+3 }-ab \geq -\frac{1}{2 }$$$$ \frac{3}{ 2}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }+ab \geq \frac{13}{42 }$$$$ \frac{41}{ 42}\geq \frac{1}{ a^4+3 }+ \frac{1}{ b^4+3 }-ab \geq -\frac{1}{2 }$$

Indonesia Regional MO 2019 Part A

by parmenides51, Nov 11, 2021, 10:33 PM

Indonesia Regional MO
Year 2019 Part A

Time: 90 minutes Rules


p1. In the bag there are $7$ red balls and $8$ white balls. Audi took two balls at once from inside the bag. The chance of taking two balls of the same color is ...


p2. Given a regular hexagon with a side length of $1$ unit. The area of the hexagon is ...


p3. It is known that $r, s$ and $1$ are the roots of the cubic equation $x^3 - 2x + c = 0$. The value of $(r-s)^2$ is ...


p4. The number of pairs of natural numbers $(m, n)$ so that $GCD(n,m) = 2$ and $LCM(m,n) = 1000$ is ...


p5. A data with four real numbers $2n-4$, $2n-6$, $n^2-8$, $3n^2-6$ has an average of $0$ and a median of $9/2$. The largest number of such data is ...


p6. Suppose $a, b, c, d$ are integers greater than $2019$ which are four consecutive quarters of an arithmetic row with $a <b <c <d$. If $a$ and $d$ are squares of two consecutive natural numbers, then the smallest value of $c-b$ is ...


p7. Given a triangle $ABC$, with $AB = 6$, $AC = 8$ and $BC = 10$. The points $D$ and $E$ lies on the line segment $BC$. with $BD = 2$ and $CE = 4$. The measure of the angle $\angle DAE$ is ...


p8. Sequqnce of real numbers $a_1,a_2,a_3,...$ meet $\frac{na_1+(n-1)a_2+...+2a_{n-1}+a_n}{n^2}=1$ for each natural number $n$. The value of $a_1a_2a_3...a_{2019}$ is ....


p9. The number of ways to select four numbers from $\{1,2,3, ..., 15\}$ provided that the difference of any two numbers at least $3$ is ...


p10. Pairs of natural numbers $(m , n)$ which satisfies $$m^2n+mn^2 +m^2+2mn = 2018m + 2019n + 2019$$are as many as ...


p11. Given a triangle $ABC$ with $\angle ABC =135^o$ and $BC> AB$. Point $D$ lies on the side $BC$ so that $AB=CD$. Suppose $F$ is a point on the side extension $AB$ so that $DF$ is perpendicular to $AB$. The point $E$ lies on the ray $DF$ such that $DE> DF$ and $\angle ACE = 45^o$. The large angle $\angle AEC$ is ...


p12. The set of $S$ consists of $n$ integers with the following properties: For every three different members of $S$ there are two of them whose sum is a member of $S$. The largest value of $n$ is ....


p13. The minimum value of $\frac{a^2+2b^2+\sqrt2}{\sqrt{ab}}$ with $a, b$ positive reals is ....


p14. The polynomial P satisfies the equation $P (x^2) = x^{2019} (x+ 1) P (x)$ with $P (1/2)= -1$ is ....


p15. Look at a chessboard measuring $19 \times 19$ square units. Two plots are said to be neighbors if they both have one side in common. Initially, there are a total of $k$ coins on the chessboard where each coin is only loaded exactly on one square and each square can contain coins or blanks. At each turn. You must select exactly one plot that holds the minimum number of coins in the number of neighbors of the plot and then you must give exactly one coin to each neighbor of the selected plot. The game ends if you are no longer able to select squares with the intended conditions. The smallest number of $k$ so that the game never ends for any initial square selection is ....
This post has been edited 1 time. Last edited by parmenides51, Nov 11, 2021, 10:34 PM

The oldest, shortest words — "yes" and "no" — are those which require the most thought.

avatar

adityaguharoy
Archives
+ February 2021
+ April 2016
Shouts
Submit
  • hi guys $~~~$

    by Yiyj1, Apr 9, 2025, 7:25 AM

  • You will be remembered

    by giangtruong13, Feb 26, 2025, 3:38 PM

  • 2025 shout!

    by just_a_math_girl, Jan 12, 2025, 7:25 AM

  • 2024 shout

    by bachkieu, Aug 22, 2024, 12:52 AM

  • helooooooooooo

    by owenccc, Sep 27, 2023, 12:59 AM

  • hullo :<

    by gracemoon124, Jul 14, 2023, 2:33 AM

  • hello $ $

    by LeoLionTank, Feb 17, 2023, 9:02 PM

  • Halo thear

    by HoRI_DA_GRe8, Oct 18, 2022, 7:44 AM

  • hi!!
    just found this and I can't wait to read more!
    so happy to have found this blog!

    by Morrigan_Black, Jan 28, 2022, 1:05 PM

  • still waiting for the mathlinks camp lol

    by CinarArslan, Jan 9, 2022, 1:55 PM

  • hello :D

    by CyclicISLscelesTrapezoid, Nov 29, 2021, 6:36 PM

  • Right below the shout box it says how many it has.

    by pith0n, May 11, 2021, 5:08 AM

  • Oh really the blog has 100 posts! I never counted the number of posts here. If I get some free time I will create a new page on my wordpress website and there I will post all the contents of this blog. So, make sure that you check the wordpress site.

    by adityaguharoy, Mar 21, 2021, 2:58 PM

  • Nice blog!

    by DCode10, Mar 10, 2021, 7:00 PM

  • Hi adityaguharoy! Nice blog!

    by masadca, Feb 4, 2021, 9:19 PM

118 shouts
Tags
number theory
algebra
calculus
Inequality
function
real analysis
Real Analysis 1
real numbers
combinatorics
continuity
geometry
polynomial
Wikipedia
inequalities
linear algebra
prime numbers
rational numbers
Sequence
Vectors and Matrices
Convergence
functional equation
gallery
identity
Irrational numbers
Lemma
mathematics
Matrices
algorithm
Calculus 1
countable sets
definition
differentiability
easy
equation
Example
images
Integral
interesting
Links
probability
set theory
trigonometry
uncountable sets
Vectors
analysis
bijection
bijective function
complex numbers
continuous function
convergence and divergence
counting
differentiation
Diophantine equation
Fibonacci sequence
fishes
Fractals
GCD
Geometric Inequalities
graph theory
Greatest Integer Function
interesting number
inverse of matrices
logic
lonesan
modulo
non-existence
numbers
pi
Pictures
puzzles
pythagoras
Recreation
Sequence and Series
sequence definition
series
Solution
solve
Theorem
triangle inequality
tribute
12-21
1968
2018
22dividedby7
259 X 39
acute angled triangle
announcement
AoPS
Apery s constant
article
Attachment
barnstar
Bertrand s postulate
Bolzano Weirestrass
BOTTEMA
bounds
bq
Candido s identity
Category I
Cauchy condensation
Celebration
chess
chess-puzzles
collection
combinatorial-number theory
Community
complement graph
complex-geometry
computer
Computer Programming
computer-programming
concave functions
Congruency
connected graph
construction
content of a polynomial
continuous
Convex Functions
convex-concave
Coronavirus
Cos
cosine rule
Covid-19
cube-root of 1
definitions
degree 2
Determinants
differentiable
Digits
Diophantus identity
divergence
Euclidean algorithm
euclidean geometry
Euler s number
ex falso quodlibet
factorization
false
Fiber
Floor
foundational mathematics
FRS degree 2
FRT
Function Construction
functions
Gauss Jordan Elimination
google
graph
greatest common divisor
greetings
Happy New Year
Hermite s identity
history
HMMT
infinity
Integers
integrable
integral-calculus
integration
irrational
isomorphic graphs
isomorphism in graph
kobayashi
Koch curve
Koch snowflake
Korselt
Korselt criterion
limit
link
Locally finite set
magma
Maple
mathematical theory
mathematicians
matrix
Measure theory
Memory
merry christmas
method
modular arithmetic
modulo 6
motto
notation
number
number of outcomes
Number of Real Number solution
number puzzles
Order
ordered pair
pascal s triangle
pattern
PDF
pigeonhole principle
polynomial approximation
positive real numbers
precautions
predicate claculus
predicate logic
prime
Prime number
project Euler
propositional calculus
propositional logic
Putnam
pythagorean tree
Quadratic
Ramsey
Ramsey Theory
rational
Real number equations
reverse under square
riemann integral
Safety
search
self complementary graphs
Sets
Sierpenski
Sierpinski Triangle
Sierpnski
sin
slogan
snowflake
software
song
squaring
Stone-Weirestrass
stronger PhP
Tan
tends
terminology
Tradition
Triangle
trigonometric inequalities
truth
twelvefold way
unity
VJIMC
Volterra s function
Weirestrass
willy s lemma
xzlbq
zeckendorf theorem
Zsigmondy
About Owner
  • Posts: 4655
  • Joined: Apr 29, 2014
Blog Stats
  • Blog created: Apr 26, 2016
  • Total entries: 101
  • Total visits: 26100
  • Total comments: 61
Search Blog
a