New Competition Series: The Million!

by Mathdreams, Apr 2, 2025, 3:57 AM

Hello AOPS Community,

Recently, me and my friend compiled a set of the most high quality problems from our imagination into a problem set called the Million. This series has three contests, called the whun, thousand and Million respectively.

Unfortunately, it did not get the love it deserved on the OTIS discord. Hence, we post it here to share these problems with the AOPS community and hopefully allow all of you to enjoy these very interesting problems.

Good luck! Lastly, remember that MILLION ORZ!

Edit: We have just been informed this will be the Orange MOP series. Please pay close attention to these problems!
Attachments:
whun.pdf (54kb)
Thousand.pdf (77kb)
MILLION.pdf (164kb)
This post has been edited 2 times. Last edited by Mathdreams, Yesterday at 3:59 AM

2025 USAMO Rubric

by plang2008, Apr 2, 2025, 1:33 AM

1. Let $k$ and $d$ be positive integers. Prove that there exists a positive integer $N$ such that for every odd integer $n>N$, the digits in the base-$2n$ representation of $n^k$ are all greater than $d$.

Rubric for Problem 1

2. Let $n$ and $k$ be positive integers with $k<n$. Let $P(x)$ be a polynomial of degree $n$ with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers $a_0,\,a_1,\,\ldots,\,a_k$ such that the polynomial $a_kx^k+\cdots+a_1x+a_0$ divides $P(x)$, the product $a_0a_1\cdots a_k$ is zero. Prove that $P(x)$ has a nonreal root.

Rubric for Problem 2

3. Alice the architect and Bob the builder play a game. First, Alice chooses two points $P$ and $Q$ in the plane and a subset $\mathcal{S}$ of the plane, which are announced to Bob. Next, Bob marks infinitely many points in the plane, designating each a city. He may not place two cities within distance at most one unit of each other, and no three cities he places may be collinear. Finally, roads are constructed between the cities as follows: for each pair $A,\,B$ of cities, they are connected with a road along the line segment $AB$ if and only if the following condition holds:
For every city $C$ distinct from $A$ and $B$, there exists $R\in\mathcal{S}$ such
that $\triangle PQR$ is directly similar to either $\triangle ABC$ or $\triangle BAC$.
Alice wins the game if (i) the resulting roads allow for travel between any pair of cities via a finite sequence of roads and (ii) no two roads cross. Otherwise, Bob wins. Determine, with proof, which player has a winning strategy.

Note: $\triangle UVW$ is directly similar to $\triangle XYZ$ if there exists a sequence of rotations, translations, and dilations sending $U$ to $X$, $V$ to $Y$, and $W$ to $Z$.

Rubric for Problem 3

4. Let $H$ be the orthocenter of acute triangle $ABC$, let $F$ be the foot of the altitude from $C$ to $AB$, and let $P$ be the reflection of $H$ across $BC$. Suppose that the circumcircle of triangle $AFP$ intersects line $BC$ at two distinct points $X$ and $Y$. Prove that $C$ is the midpoint of $XY$.

Rubric for Problem 4

5. Determine, with proof, all positive integers $k$ such that \[\frac{1}{n+1} \sum_{i=0}^n \binom{n}{i}^k\]is an integer for every positive integer $n$.

Rubric for Problem 5

6. Let $m$ and $n$ be positive integers with $m\geq n$. There are $m$ cupcakes of different flavors arranged around a circle and $n$ people who like cupcakes. Each person assigns a nonnegative real number score to each cupcake, depending on how much they like the cupcake. Suppose that for each person $P$, it is possible to partition the circle of $m$ cupcakes into $n$ groups of consecutive cupcakes so that the sum of $P$'s scores of the cupcakes in each group is at least $1$. Prove that it is possible to distribute the $m$ cupcakes to the $n$ people so that each person $P$ receives cupcakes of total score at least $1$ with respect to $P$.

Rubric for Problem 6

AMC 10/AIME Study Forum

by PatTheKing806, Mar 27, 2025, 11:34 PM


Me (PatTheKing806) and EaZ_Shadow have created a AMC 10/AIME Study Forum! Hopefully, this forum wont die quickly. To signup, do /join or \join.

Click here to join! (or do some pushups) :P

People should join this forum if they are wanting to do well on the AMC 10 next year, trying get into AIME, or loves math!
This post has been edited 2 times. Last edited by PatTheKing806, Mar 27, 2025, 11:35 PM
L

LMT Spring 2025 and Girls&#039; LMT 2025

by vrondoS, Mar 27, 2025, 1:55 AM

The Lexington High School Math Team is proud to announce LMT Spring 2025 and our inaugural Girls’ LMT 2025! LMT is a competition for middle school students interested in math. Students can participate individually, or on teams of 4-6 members. This announcement contains information for BOTH competitions.

LMT Spring 2025 will take place from 8:30 AM-5:00 PM on Saturday, May 3rd at Lexington High School, 251 Waltham St., Lexington, MA 02421.

The competition will include two individual rounds, a Team Round, and a Guts Round, with a break for lunch and mini-events. A detailed schedule is available at https://lhsmath.org/LMT/Schedule.

There is a $15 fee per participant, paid on the day of the competition. Pizza will be provided for lunch, at no additional cost.

Register for LMT at https://lhsmath.org/LMT/Registration/Home.

Girls’ LMT 2025 will be held ONLINE on MathDash from 11:00 AM-4:15 PM EST on Saturday, April 19th, 2025. Participation is open to middle school students who identify as female or non-binary. The competition will include an individual round and a team round with a break for lunch and mini-events. It is free to participate.

Register for GLMT at https://www.lhsmath.org/LMT/Girls_LMT.

More information is available on our website: https://lhsmath.org/LMT/Home. Email lmt.lhsmath@gmail.com with any questions.
Attachments:
This post has been edited 1 time. Last edited by vrondoS, Mar 27, 2025, 5:18 AM

Westford Academy to host Middle School Math Competition

by cyou, Mar 25, 2025, 9:43 PM

Hi AOPS community,

We are excited to announce that Westford Academy (located in Westford, MA) will be hosting its first ever math competition for middle school students (grades 5-8).

Based in Massachusetts, this tournament hosts ambitious and mathematically skilled students in grades 5–8 to compete against other middle school math teams while fostering their problem-solving skills and preparing them to continue enriching their STEM skills in high school and in the future.

This competition will be held on April 12, 2025 from 12:00 PM to 5:00 PM and will feature 3 rounds (team, speed, and accuracy). The problems will be of similar difficulty for AMC 8-10 and were written by USA(J)MO and AIME qualifiers.

If you are in the Massachusetts area and are curious about Mathematics, we cordially invite you to sign up by scanning the QR code on the attached flyer. Please note that teams consist of 4-6 competitors, but if you prefer to register as an individual competitor, you will be randomly placed on a team of other individual competitors. Feel free to refer the attached flyer and website as needed.


https://sites.google.com/westfordk12.us/wamt/home?authuser=2
Attachments:

Double dose of cyanide on day 2

by brianzjk, Mar 23, 2023, 10:20 PM

Let $n\geq3$ be an integer. We say that an arrangement of the numbers $1$, $2$, $\dots$, $n^2$ in a $n \times n$ table is row-valid if the numbers in each row can be permuted to form an arithmetic progression, and column-valid if the numbers in each column can be permuted to form an arithmetic progression. For what values of $n$ is it possible to transform any row-valid arrangement into a column-valid arrangement by permuting the numbers in each row?
This post has been edited 1 time. Last edited by brianzjk, Mar 23, 2023, 11:35 PM

Moving P(o)in(t)s

by bobthegod78, Apr 15, 2021, 5:08 PM

Carina has three pins, labeled $A, B$, and $C$, respectively, located at the origin of the coordinate plane. In a move, Carina may move a pin to an adjacent lattice point at distance $1$ away. What is the least number of moves that Carina can make in order for triangle $ABC$ to have area 2021?

(A lattice point is a point $(x, y)$ in the coordinate plane where $x$ and $y$ are both integers, not necessarily positive.)
This post has been edited 2 times. Last edited by bobthegod78, Apr 15, 2021, 6:40 PM

2016 Sets

by NormanWho, Apr 20, 2016, 9:30 PM

Find, with proof, the least integer $N$ such that if any $2016$ elements are removed from the set ${1, 2,...,N}$, one can still find $2016$ distinct numbers among the remaining elements with sum $N$.
This post has been edited 1 time. Last edited by NormanWho, Apr 20, 2016, 9:31 PM

Permutations Part 1: 2010 USAJMO #1

by tenniskidperson3, Apr 29, 2010, 3:36 PM

A permutation of the set of positive integers $[n] = \{1, 2, . . . , n\}$ is a sequence $(a_1 , a_2 , \ldots, a_n ) $ such that each element of $[n]$ appears precisely one time as a term of the sequence. For example, $(3, 5, 1, 2, 4)$ is a permutation of $[5]$. Let $P (n)$ be the number of permutations of $[n]$ for which $ka_k$ is a perfect square for all $1 \leq k \leq n$. Find with proof the smallest $n$ such that $P (n)$ is a multiple of $2010$.
This post has been edited 2 times. Last edited by tenniskidperson3, Dec 22, 2015, 2:55 AM
Reason: Lolol latex was wrong for 5 years and nobody caught it

Isosceles Triangulation

by worthawholebean, May 1, 2008, 4:57 PM

Let $ \mathcal{P}$ be a convex polygon with $ n$ sides, $ n\ge3$. Any set of $ n - 3$ diagonals of $ \mathcal{P}$ that do not intersect in the interior of the polygon determine a triangulation of $ \mathcal{P}$ into $ n - 2$ triangles. If $ \mathcal{P}$ is regular and there is a triangulation of $ \mathcal{P}$ consisting of only isosceles triangles, find all the possible values of $ n$.
This post has been edited 1 time. Last edited by worthawholebean, May 1, 2008, 8:54 PM

The oldest, shortest words — "yes" and "no" — are those which require the most thought.

avatar

adityaguharoy
Archives
+ February 2021
+ April 2016
Shouts
Submit
  • You will be remembered

    by giangtruong13, Feb 26, 2025, 3:38 PM

  • 2025 shout!

    by just_a_math_girl, Jan 12, 2025, 7:25 AM

  • 2024 shout

    by bachkieu, Aug 22, 2024, 12:52 AM

  • helooooooooooo

    by owenccc, Sep 27, 2023, 12:59 AM

  • hullo :<

    by gracemoon124, Jul 14, 2023, 2:33 AM

  • hello $ $

    by LeoLionTank, Feb 17, 2023, 9:02 PM

  • Halo thear

    by HoRI_DA_GRe8, Oct 18, 2022, 7:44 AM

  • hi!!
    just found this and I can't wait to read more!
    so happy to have found this blog!

    by Morrigan_Black, Jan 28, 2022, 1:05 PM

  • still waiting for the mathlinks camp lol

    by CinarArslan, Jan 9, 2022, 1:55 PM

  • hello :D

    by CyclicISLscelesTrapezoid, Nov 29, 2021, 6:36 PM

  • Right below the shout box it says how many it has.

    by pith0n, May 11, 2021, 5:08 AM

  • Oh really the blog has 100 posts! I never counted the number of posts here. If I get some free time I will create a new page on my wordpress website and there I will post all the contents of this blog. So, make sure that you check the wordpress site.

    by adityaguharoy, Mar 21, 2021, 2:58 PM

  • Nice blog!

    by DCode10, Mar 10, 2021, 7:00 PM

  • Hi adityaguharoy! Nice blog!

    by masadca, Feb 4, 2021, 9:19 PM

  • wow just noticed congrats on 100 posts in this blog !!!!!!!

    by mathical8, Jan 7, 2021, 4:20 AM

117 shouts
Tags
number theory
algebra
calculus
Inequality
function
real analysis
Real Analysis 1
real numbers
combinatorics
continuity
geometry
polynomial
Wikipedia
inequalities
linear algebra
prime numbers
rational numbers
Sequence
Vectors and Matrices
Convergence
functional equation
gallery
identity
Irrational numbers
Lemma
mathematics
Matrices
algorithm
Calculus 1
countable sets
definition
differentiability
easy
equation
Example
images
Integral
interesting
Links
probability
set theory
trigonometry
uncountable sets
Vectors
analysis
bijection
bijective function
complex numbers
continuous function
convergence and divergence
counting
differentiation
Diophantine equation
Fibonacci sequence
fishes
Fractals
GCD
Geometric Inequalities
graph theory
Greatest Integer Function
interesting number
inverse of matrices
logic
lonesan
modulo
non-existence
numbers
pi
Pictures
puzzles
pythagoras
Recreation
Sequence and Series
sequence definition
series
Solution
solve
Theorem
triangle inequality
tribute
12-21
1968
2018
22dividedby7
259 X 39
acute angled triangle
announcement
AoPS
Apery s constant
article
Attachment
barnstar
Bertrand s postulate
Bolzano Weirestrass
BOTTEMA
bounds
bq
Candido s identity
Category I
Cauchy condensation
Celebration
chess
chess-puzzles
collection
combinatorial-number theory
Community
complement graph
complex-geometry
computer
Computer Programming
computer-programming
concave functions
Congruency
connected graph
construction
content of a polynomial
continuous
Convex Functions
convex-concave
Coronavirus
Cos
cosine rule
Covid-19
cube-root of 1
definitions
degree 2
Determinants
differentiable
Digits
Diophantus identity
divergence
Euclidean algorithm
euclidean geometry
Euler s number
ex falso quodlibet
factorization
false
Fiber
Floor
foundational mathematics
FRS degree 2
FRT
Function Construction
functions
Gauss Jordan Elimination
google
graph
greatest common divisor
greetings
Happy New Year
Hermite s identity
history
HMMT
infinity
Integers
integrable
integral-calculus
integration
irrational
isomorphic graphs
isomorphism in graph
kobayashi
Koch curve
Koch snowflake
Korselt
Korselt criterion
limit
link
Locally finite set
magma
Maple
mathematical theory
mathematicians
matrix
Measure theory
Memory
merry christmas
method
modular arithmetic
modulo 6
motto
notation
number
number of outcomes
Number of Real Number solution
number puzzles
Order
ordered pair
pascal s triangle
pattern
PDF
pigeonhole principle
polynomial approximation
positive real numbers
precautions
predicate claculus
predicate logic
prime
Prime number
project Euler
propositional calculus
propositional logic
Putnam
pythagorean tree
Quadratic
Ramsey
Ramsey Theory
rational
Real number equations
reverse under square
riemann integral
Safety
search
self complementary graphs
Sets
Sierpenski
Sierpinski Triangle
Sierpnski
sin
slogan
snowflake
software
song
squaring
Stone-Weirestrass
stronger PhP
Tan
tends
terminology
Tradition
Triangle
trigonometric inequalities
truth
twelvefold way
unity
VJIMC
Volterra s function
Weirestrass
willy s lemma
xzlbq
zeckendorf theorem
Zsigmondy
About Owner
  • Posts: 4655
  • Joined: Apr 29, 2014
Blog Stats
  • Blog created: Apr 26, 2016
  • Total entries: 101
  • Total visits: 25028
  • Total comments: 61
Search Blog
a