Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
Interesting Function
Kei0923   4
N 12 minutes ago by CrazyInMath
Source: 2024 JMO preliminary p8
Function $f:\mathbb{Z}_{\geq 0}\rightarrow\mathbb{Z}$ satisfies
$$f(m+n)^2=f(m|f(n)|)+f(n^2)$$for any non-negative integers $m$ and $n$. Determine the number of possible sets of integers $\{f(0), f(1), \dots, f(2024)\}$.
4 replies
Kei0923
Jan 9, 2024
CrazyInMath
12 minutes ago
Evaluate: $\lim_{h\to 0^{-}} \frac{-1}{h}.$
Vulch   1
N an hour ago by happyhippos
Respected users,
I am asking for better solution of the following problem with excellent explanation.
Thank you!

Evaluate: $\lim_{h\to 0^{-}} \frac{-1}{h}.$
1 reply
Vulch
2 hours ago
happyhippos
an hour ago
D1022 : This serie converge?
Dattier   1
N 5 hours ago by Alphaamss
Source: les dattes à Dattier
Is this series $\sum \limits_{k\geq 1} \dfrac{\ln\left(1+\dfrac 13\sin(k)\right)} k$ converge?
1 reply
Dattier
Monday at 8:13 PM
Alphaamss
5 hours ago
Irrational Numbers
EthanWYX2009   1
N Yesterday at 6:49 PM by yofro
Let $x_1,\ldots ,x_{2n-1}$ be distinct irrational numbers. Show that there exists $y_1,\ldots ,y_n\in\{x_1,\ldots ,x_{2n-1}\},$ such that $\forall S\subset [n]\neq\varnothing,$
$$\sum_{s\in S}x_s\notin\mathbb Q.$$
1 reply
EthanWYX2009
Yesterday at 4:59 AM
yofro
Yesterday at 6:49 PM
VJIMC 2015 Category I, Problem 1
ellipticfunction   9
N Yesterday at 6:08 PM by Rohit-2006
Source: VJIMC2015
Problem 1
Let $f :  \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on $\mathbb{R}$. Prove that there exists $x \in [0, 1]$ such that
$$\frac{4}{\pi} ( f(1) - f(0) ) = (1+x^2) f'(x)      \ .$$
9 replies
ellipticfunction
Aug 10, 2015
Rohit-2006
Yesterday at 6:08 PM
Matrix Row and column relation.
Schro   5
N Yesterday at 5:01 PM by Etkan
If ith row of a matrix A is dependent,Then ith column of A is also dependent and vice versa .

Am i correct...
5 replies
Schro
Monday at 2:54 PM
Etkan
Yesterday at 5:01 PM
D1023 : MVT 2.0
Dattier   0
Yesterday at 1:04 PM
Source: les dattes à Dattier
Let $f \in C(\mathbb R)$ derivable on $\mathbb R$ with $$\forall x \in \mathbb R,\forall h \geq 0, f(x)-3f(x+h)+3f(x+2h)-f(x+3h) \geq 0$$
Is it true that $$\forall (a,b) \in\mathbb R^2, |f(a)-f(b)|\leq \max\left(\left|f'\left(\dfrac{a+b} 2\right)\right|,\dfrac {|f'(a)+f'(b)|}{2}\right)\times |a-b|$$
0 replies
Dattier
Yesterday at 1:04 PM
0 replies
Time required for draining out water
Kunihiko_Chikaya   1
N Yesterday at 12:22 PM by Mathzeus1024
Source: Kyoto University 2nd-stage entry exam 2006 /Science, Problem
Let $H>0,\ R>0$ and $O$ be the origin, $P\ (R,\ 0\ ,H).$ In space given the vessel formed by the revolution of the segment $OP$ about $z$-axis. Denote the hight from $O$ to the surface of water by $h.$ When the vessel is filled with water, drain the water out such that the displacement per time is $\sqrt{h}$ at the time of $h,$ that is to say, if the total volume of the water drained out till the time $t$ is $V(t),$ then $\frac{dV}{dt}=\sqrt{h}$ holds. Find the time required for draining out water.
1 reply
Kunihiko_Chikaya
Mar 14, 2006
Mathzeus1024
Yesterday at 12:22 PM
D1021 : Does this series converge?
Dattier   1
N Yesterday at 9:01 AM by Dattier
Source: les dattes à Dattier
Is this series $\sum \limits_{k\geq 1} \dfrac{\ln(1+\sin(k))} k$ converge?
1 reply
Dattier
Apr 26, 2025
Dattier
Yesterday at 9:01 AM
UC Berkeley Integration Bee 2025 Qualifying Exam
Silver08   18
N Yesterday at 5:29 AM by Silver08
Source: UC Berkeley Integration Bee 2025
Good luck and have fun!!!

1. $$\int_{-\sqrt[3]{2}}^{1}(x^3+x^6)(x^2+2x^5)dx$$
2. $$\int \frac{e^x}{1+e^{2x}}+\frac{x}{1+x^2}dx$$
3. $$\int_0^\pi x^4\cos(x)dx$$
4. $$\int_{0}^{\frac{\pi}{2}}\sin^2(x)\cos^2(x)dx$$
5. $$\int_1^2\frac{\sqrt{x^2+2\sqrt{x^2-1}}}{\sqrt{x^2-1}}dx$$
6. $$\int_2^4\frac{(2-x)}{(x-1)(x-5)}dx$$
7. $$\int_0^\infty \frac{dx}{x^2-2x+2}$$
8. $$\int (e^x+\ln(x))\left(e^x+\frac{1}{x}\right)dx$$
9. $$\int_{-\infty}^{\infty}\frac{\ln(x^2+1)}{x^2}dx$$
10. $$\int_0^1 \frac{dx}{\sqrt{1+\sqrt{x}}-\sqrt{1-\sqrt{x}}}$$
11. $$\int_0^1 2^{\ln(x)}dx$$
12. $$\int \frac{d}{dx}\left [ \frac{e^x}{\ln(x)} \right] \cdot \frac{\ln(x)}{e^x} dx$$
13. $$\int_1^\infty \ln(x)-\frac{1}{2}\ln(x^2+1)dx$$
14. $$\int_0^1 2x\sqrt{x-x^2}dx$$
15. $$\int_0^1 \ln^3(x)dx$$
16. $$\int_0^\pi\frac{\sqrt{\csc(x)-\sin(x)}}{\sqrt{\sin(x)}+1}dx$$
17. $$\int_0^6\frac{x}{\sqrt{x+\sqrt{x+\sqrt{x+...}}}}dx$$
18. $$\int_0^\infty \frac{\sin(x)\cos(2x)\cos^2(x)}{x}dx$$
19. $$\int_0^{\infty}\frac{dx}{1+x+x^2+x^3}$$
20. $$\int_{-\infty}^{\infty}\frac{(x^5-x^3)}{(x^2-1)^4+x^4}dx$$
18 replies
Silver08
Apr 27, 2025
Silver08
Yesterday at 5:29 AM
Polynomial Limit
P162008   1
N Yesterday at 4:05 AM by P162008
Let $p = \lim_{y\to\infty} \left(\frac{2}{y^2} \left(\lim_{z\to\infty} \frac{1}{z^4} \left(\lim_{x\to 0} \frac{((y^2 + y + 1)x^k + 1)^{z^2 + z + 1} - ((z^2 + z + 1)x^k + 1)^{y^2 + y + 1}}{x^{2k}}\right)\right)\right)^y$ where $k \in N$ and $q = \lim_{n\to\infty} \left(\frac{\binom{2n}{n}. n!}{n^n}\right)^{1/n}$ where $n \in N$. Find the value of $p.q.$
1 reply
P162008
Apr 25, 2025
P162008
Yesterday at 4:05 AM
Sum of max of some sequences is sum of powers
Miquel-point   0
Apr 6, 2025
Source: Romanian IMO TST 1981, Day 3 P1
Consider the set $M$ of all sequences of integers $s=(s_1,\ldots,s_k)$ such that $0\leqslant s_i\leqslant n,\; i=1,2,\ldots,k$ and let $M(s)=\max\{s_1,\ldots,s_k\}$. Show that
\[\sum_{s\in A} M(s)=(n+1)^{k+1}-(1^k+2^k+\ldots +(n+1)^k).\]
Ioan Tomescu
0 replies
Miquel-point
Apr 6, 2025
0 replies
Sum of max of some sequences is sum of powers
G H J
G H BBookmark kLocked kLocked NReply
Source: Romanian IMO TST 1981, Day 3 P1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Miquel-point
477 posts
#1 • 1 Y
Y by PikaPika999
Consider the set $M$ of all sequences of integers $s=(s_1,\ldots,s_k)$ such that $0\leqslant s_i\leqslant n,\; i=1,2,\ldots,k$ and let $M(s)=\max\{s_1,\ldots,s_k\}$. Show that
\[\sum_{s\in A} M(s)=(n+1)^{k+1}-(1^k+2^k+\ldots +(n+1)^k).\]
Ioan Tomescu
Z K Y
N Quick Reply
G
H
=
a