Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
P2 Geo that most of contestants died
AlephG_64   2
N 31 minutes ago by Tsikaloudakis
Source: 2025 Finals Portuguese Mathematical Olympiad P2
Let $ABCD$ be a quadrilateral such that $\angle A$ and $\angle D$ are acute and $\overline{AB} = \overline{BC} = \overline{CD}$. Suppose that $\angle BDA = 30^\circ$, prove that $\angle DAC= 30^\circ$.
2 replies
AlephG_64
Yesterday at 1:23 PM
Tsikaloudakis
31 minutes ago
Geometry
youochange   0
34 minutes ago
m:}
Let $\triangle ABC$ be a triangle inscribed in a circle, where the tangents to the circle at points $B$ and $C$ intersect at the point $P$. Let $M$ be a point on the arc $AC$ (not containing $B$) such that $M \neq A$ and $M \neq C$. Let the lines $BC$ and $AM$ intersect at point $K$. Let $P'$ be the reflection of $P$ with respect to the line $AM$. The lines $AP'$ and $PM$ intersect at point $Q$, and $PM$ intersects the circumcircle of $\triangle ABC$ again at point $N$.

Prove that the point $Q$ lies on the circumcircle of $\triangle ANK$.
0 replies
youochange
34 minutes ago
0 replies
comp. geo starting with a 90-75-15 triangle. <APB =<CPQ, <BQA =<CQP.
parmenides51   1
N 43 minutes ago by Mathzeus1024
Source: 2013 Cuba 2.9
Let ABC be a triangle with $\angle A = 90^o$, $\angle B = 75^o$, and $AB = 2$. Points $P$ and $Q$ of the sides $AC$ and $BC$ respectively, are such that $\angle APB =  \angle CPQ$ and $\angle BQA = \angle CQP$. Calculate the lenght of $QA$.
1 reply
parmenides51
Sep 20, 2024
Mathzeus1024
43 minutes ago
Fridolin just can't get enough from jumping on the number line
Tintarn   2
N an hour ago by Sadigly
Source: Bundeswettbewerb Mathematik 2025, Round 1 - Problem 1
Fridolin the frog jumps on the number line: He starts at $0$, then jumps in some order on each of the numbers $1,2,\dots,9$ exactly once and finally returns with his last jump to $0$. Can the total distance he travelled with these $10$ jumps be a) $20$, b) $25$?
2 replies
Tintarn
Mar 17, 2025
Sadigly
an hour ago
Geometry
Captainscrubz   2
N an hour ago by MrdiuryPeter
Source: Own
Let $D$ be any point on side $BC$ of $\triangle ABC$ .Let $E$ and $F$ be points on $AB$ and $AC$ such that $EB=ED$ and $FD=FC$ respectively. Prove that the locus of circumcenter of $(DEF)$ is a line.
Prove without using moving points :D
2 replies
Captainscrubz
3 hours ago
MrdiuryPeter
an hour ago
inequality ( 4 var
SunnyEvan   4
N an hour ago by SunnyEvan
Let $ a,b,c,d \in R $ , such that $ a+b+c+d=4 . $ Prove that :
$$ a^4+b^4+c^4+d^4+3 \geq \frac{7}{4}(a^3+b^3+c^3+d^3) $$$$ a^4+b^4+c^4+d^4+ \frac{252}{25} \geq \frac{88}{25}(a^3+b^3+c^3+d^3) $$equality cases : ?
4 replies
SunnyEvan
Apr 4, 2025
SunnyEvan
an hour ago
Find the constant
JK1603JK   1
N an hour ago by Quantum-Phantom
Source: unknown
Find all $k$ such that $$\left(a^{3}+b^{3}+c^{3}-3abc\right)^{2}-\left[a^{3}+b^{3}+c^{3}+3abc-ab(a+b)-bc(b+c)-ca(c+a)\right]^{2}\ge 2k\cdot(a-b)^{2}(b-c)^{2}(c-a)^{2}$$forall $a,b,c\ge 0.$
1 reply
JK1603JK
5 hours ago
Quantum-Phantom
an hour ago
2025 - Turkmenistan National Math Olympiad
A_E_R   4
N an hour ago by NODIRKHON_UZ
Source: Turkmenistan Math Olympiad - 2025
Let k,m,n>=2 positive integers and GCD(m,n)=1, Prove that the equation has infinitely many solutions in distict positive integers: x_1^m+x_2^m+⋯x_k^m=x_(k+1)^n
4 replies
A_E_R
2 hours ago
NODIRKHON_UZ
an hour ago
hard problem
Cobedangiu   15
N an hour ago by Nguyenhuyen_AG
problem
15 replies
Cobedangiu
Mar 27, 2025
Nguyenhuyen_AG
an hour ago
9x9 board
oneplusone   8
N 2 hours ago by lightsynth123
Source: Singapore MO 2011 open round 2 Q2
If 46 squares are colored red in a $9\times 9$ board, show that there is a $2\times 2$ block on the board in which at least 3 of the squares are colored red.
8 replies
oneplusone
Jul 2, 2011
lightsynth123
2 hours ago
a