Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

G
Topic
First Poster
Last Poster
Parallel lines..
ts0_9   9
N 2 hours ago by OutKast
Source: Kazakhstan National Olympiad 2014 P3 D1 10 grade
The triangle $ABC$ is inscribed in a circle $w_1$. Inscribed in a triangle circle touchs the sides $BC$ in a point $N$. $w_2$ — the circle inscribed in a segment $BAC$ circle of $w_1$, and passing through a point $N$. Let points $O$ and $J$ — the centers of circles $w_2$ and an extra inscribed circle (touching side $BC$) respectively. Prove, that lines $AO$ and $JN$ are parallel.
9 replies
ts0_9
Mar 26, 2014
OutKast
2 hours ago
KMN and PQR are tangent at a fixed point
hal9v4ik   4
N 2 hours ago by OutKast
Let $ABCD$ be cyclic quadrilateral. Let $AC$ and $BD$ intersect at $R$, and let $AB$ and $CD$ intersect at $K$. Let $M$ and $N$ are points on $AB$ and $CD$ such that $\frac{AM}{MB}=\frac{CN}{ND}$. Let $P$ and $Q$ be the intersections of $MN$ with the diagonals of $ABCD$. Prove that circumcircles of triangles $KMN$ and $PQR$ are tangent at a fixed point.
4 replies
hal9v4ik
Mar 19, 2013
OutKast
2 hours ago
one cyclic formed by two cyclic
CrazyInMath   40
N 2 hours ago by HamstPan38825
Source: EGMO 2025/3
Let $ABC$ be an acute triangle. Points $B, D, E$, and $C$ lie on a line in this order and satisfy $BD = DE = EC$. Let $M$ and $N$ be the midpoints of $AD$ and $AE$, respectively. Suppose triangle $ADE$ is acute, and let $H$ be its orthocentre. Points $P$ and $Q$ lie on lines $BM$ and $CN$, respectively, such that $D, H, M,$ and $P$ are concyclic and pairwise different, and $E, H, N,$ and $Q$ are concyclic and pairwise different. Prove that $P, Q, N,$ and $M$ are concyclic.
40 replies
CrazyInMath
Apr 13, 2025
HamstPan38825
2 hours ago
geometry problem
Medjl   5
N 2 hours ago by LeYohan
Source: Netherlands TST for IMO 2017 day 3 problem 1
A circle $\omega$ with diameter $AK$ is given. The point $M$ lies in the interior of the circle, but not on $AK$. The line $AM$ intersects $\omega$ in $A$ and $Q$. The tangent to $\omega$ at $Q$ intersects the line through $M$ perpendicular to $AK$, at $P$. The point $L$ lies on $\omega$, and is such that $PL$ is tangent to $\omega$ and $L\neq Q$.
Show that $K, L$, and $M$ are collinear.
5 replies
Medjl
Feb 1, 2018
LeYohan
2 hours ago
Connected, not n-colourable graph
mavropnevma   7
N 2 hours ago by OutKast
Source: Tuymaada 2013, Day 1, Problem 4 Juniors and 3 Seniors
The vertices of a connected graph cannot be coloured with less than $n+1$ colours (so that adjacent vertices have different colours).
Prove that $\dfrac{n(n-1)}{2}$ edges can be removed from the graph so that it remains connected.

V. Dolnikov

EDIT. It is confirmed by the official solution that the graph is tacitly assumed to be finite.
7 replies
mavropnevma
Jul 20, 2013
OutKast
2 hours ago
Homothety with incenter and circumcenters
Ikeronalio   8
N 3 hours ago by LeYohan
Source: Korea National Olympiad 2009 Problem 1
Let $I, O$ be the incenter and the circumcenter of triangle $ABC$, and $D,E,F$ be the circumcenters of triangle $ BIC, CIA, AIB$. Let $ P, Q, R$ be the midpoints of segments $ DI, EI, FI $. Prove that the circumcenter of triangle $PQR $, $M$, is the midpoint of segment $IO$.
8 replies
Ikeronalio
Sep 9, 2012
LeYohan
3 hours ago
2-var inequality
sqing   11
N 3 hours ago by ytChen
Source: Own
Let $ a,b>0 , a^2+b^2-ab\leq 1 . $ Prove that
$$a^3+b^3 -\frac{a^4}{b+1}  -\frac{b^4}{a+1} \leq 1 $$
11 replies
sqing
May 27, 2025
ytChen
3 hours ago
Sums of products of entries in a matrix
Stear14   0
3 hours ago
(a) $\ $Each entry of an $\ 8\times 8\ $ matrix equals either $\ 1\ $ or $\ 2.\ $ Let $\ A\ $ denote the sum of eight products of entries in each row. Also, let $\ B\ $ denote the sum of eight products of entries in each column. Find the maximum possible value of $\ A-B.\ $ In other words, find
$$ {\rm max}\ \left[ \sum_{i=1}^8\ \prod_{j=1}^8\ a_{ij} - 
\sum_{j=1}^8\ \prod_{i=1}^8\ a_{ij} \right]
$$
(b) $\ $Same question, but for a $\ 2025\times 2025\ $ matrix.
0 replies
Stear14
3 hours ago
0 replies
a father and his son are skating around a circular skating rink
parmenides51   2
N 3 hours ago by thespacebar1729
Source: Tournament Of Towns Spring 1999 Junior 0 Level p1
A father and his son are skating around a circular skating rink. From time to time, the father overtakes the son. After the son starts skating in the opposite direction, they begin to meet five times more often. What is the ratio of the skating speeds of the father and the son?

(Tairova)
2 replies
parmenides51
May 7, 2020
thespacebar1729
3 hours ago
Sums of n mod k
EthanWYX2009   1
N 3 hours ago by Martin.s
Source: 2025 May 谜之竞赛-3
Given $0<\varepsilon <1.$ Show that there exists a constant $c>0,$ such that for all positive integer $n,$
\[\sum_{k\le n^{\varepsilon}}(n\text{ mod } k)>cn^{2\varepsilon}.\]Proposed by Cheng Jiang
1 reply
EthanWYX2009
May 26, 2025
Martin.s
3 hours ago
FE solution too simple?
Yiyj1   9
N Apr 23, 2025 by jasperE3
Source: 101 Algebra Problems from the AMSP
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
9 replies
Yiyj1
Apr 9, 2025
jasperE3
Apr 23, 2025
FE solution too simple?
G H J
G H BBookmark kLocked kLocked NReply
Source: 101 Algebra Problems from the AMSP
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yiyj1
1268 posts
#1
Y by
Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality $$f(f(x)+y) = f(x^2-y)+4f(x)y$$holds for all pairs of real numbers $(x,y)$.

My solution

I feel like my solution is too simple. Is there something I did wrong or something I missed?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
InterLoop
279 posts
#2 • 1 Y
Y by Yiyj1
You cannot immediately "cancel" the $f$ without further conclusions.

For example $f(3) = f(2) = 1$ is possible for a function - this does not mean that $3 = 2$.
The property that leads you to $f(a) = f(b) \implies a = b$ or the "cancellation" of $f$ is called injectivity. You have to prove the function is injective first before cancellation.

Another example is simply the fact that you have not "excluded" the solution $f(x) \equiv 0$ from the equation $f(f(x)) =f(x^2)$ in any way - so $f(x) = x^2$ is wrong for that function as well. (thus $f(x) \equiv 0$ is not injective)
This post has been edited 2 times. Last edited by InterLoop, Apr 9, 2025, 3:39 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Yiyj1
1268 posts
#3
Y by
InterLoop wrote:
You cannot immediately "cancel" the $f$ without further conclusions.

For example $f(3) = f(2) = 1$ is possible for a function - this does not mean that $3 = 2$.
The property that leads you to $f(a) = f(b) \implies a = b$ or the "cancellation" of $f$ is called injectivity. You have to prove the function is injective first before cancellation.

ahh ic. I'll try to prove the injectivity. ty!
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
AshAuktober
1013 posts
#4
Y by
This is in fact from Iran TST.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
davichu
8 posts
#5
Y by
Clearly, $f(x)\equiv0$ is a trivial solution, from now on, we assume it is not the case
Let $P(x,y)$ denote the assertion $f(f(x)+y) = f(x^2-y)+4f(x)y$
$$P(x,-f(x))\rightarrow f(0)=f(x^2+f(x))-4f(x)^2$$$$P(x,x^2)\rightarrow f(x^2+f(x))=f(0)+4f(x)x^2$$Adding these two together we get:
$4f(x)^2=4f(x)x^2\rightarrow f(x)^2=f(x)x^2$
Since $f(x)\neq0$,we can divide by $f(x)$ on both sides to get $f(x)=x^2$
so the only solutions are $f(x)\equiv0$ and $f(x)=x^2\forall x \in \mathbb{R}$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#6
Y by
davichu wrote:
Since $f(x)\neq0$,we can divide by $f(x)$ on both sides to get $f(x)=x^2$

You must at first prove that $f(x) =0 \text{ iff } x=0$(or simply avoid pointwise trap).
This post has been edited 1 time. Last edited by Primeniyazidayi, Apr 22, 2025, 11:12 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Primeniyazidayi
117 posts
#7
Y by
The finish for @2above(hopefully correct):We will avoid pointwise trap.We of course have $f(0) =0$.Let $f(t) =0$ for $t \neq 0$.$P(t,y)$ gives $f(y) =f(t^2-y)$.Take some $u$ such that $f(u) =u^2 \neq 0$.Then we have $u^2=t^2(t^2-2u) +u^2$ or $u=\frac{t^2}{2}$.But $P(0, x) $ gives that $f$ is even which means $\frac{t^2}{2}=-\frac{t^2}{2}$ or $t=0$, contradiction. Thus we are done.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ariopro1387
27 posts
#8
Y by
Let $P(x,y)$ be the assertion of the problem.
$P(x,\frac{x^2-f(x)}{2});$ $\frac{x^2-f(x)}{2}.f(x) = 0$
$\forall x \in \mathbb{R}$
1. $f(x)\equiv0$
2. $f(x)=x^2$
we have to just check that both won't happen:
if $f(x_{1}) = 0:$
$P(x_{1},y);$ $f(y) = f(x_{1}^2-y)$
then by changing $y$ value we get that $x_{1} = 0$ or $f(x)\equiv C$ (Just $C=0$ works).
This post has been edited 1 time. Last edited by ariopro1387, Apr 22, 2025, 4:06 PM
Reason: edit
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lksb
183 posts
#9 • 1 Y
Y by Yiyj1
one-liner
This post has been edited 1 time. Last edited by lksb, Apr 22, 2025, 7:15 PM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11395 posts
#10
Y by
lksb wrote:
one-liner

pointwise trap
Z K Y
N Quick Reply
G
H
=
a